Araştırma Makalesi
BibTex RIS Kaynak Göster

EEG İşareti Kullanılarak Bağımlılığa Yatkınlığın Makine Öğrenmesi Teknikleri ile Analizi

Yıl 2021, , 142 - 154, 31.01.2021
https://doi.org/10.31202/ecjse.787726

Öz

Alkol bağımlılığının Elektroensefalografi (EEG) sinyalleri ile teşhisi, hem kişisel açıdan hem de toplum açısından önemli bir konudur. Günümüzde birçok insan bu bağımlılıktan etkilenmektedir. Başta beyin, kalp ve bağışıklık sistemi olmak üzere fizyolojik etkileri olduğu gibi, psikolojik etkileri de söz konusudur. Bu etkileri gözlemleyebilmek için EEG sinyalleri etkin bir şekilde kullanılmaktadır. Bu çalışmada, alkolizme yatkınlığın EEG sinyalleri kullanılarak teşhisi yapılmıştır. Veri tabanı aracılığı ile elde edilen EEG sinyal üzerinde öncelikle veri analizi yapılmıştır. Özyinelemeli öznitelik seçimi gerçekleştirilmiştir. Sınıflandırma için Çok Katmanlı Yapay Sinir Ağları (ÇKYSA), Evrişimsel Sinir Ağları (ESA), XGBoost Algoritması (XGBA), Rassal Orman Algoritması (ROA), K-En Yakın Komşu Algoritması (K-EKA) kullanılmıştır. Pyhton ortamında çalışılmıştır. Sınıflandırma başarım ölçütleri için doğruluk, kesinlik, duyarlılık ve F1 Skor kullanılmıştır. Algoritmalar çalışma süreleri açısından karşılaştırılmıştır. Sınıflandırma başarımı açısında ÇKYSA ve ESA en iyi sonuçları vermiştir. Algoritmaların çalışma süreleri açısından bakıldığında XGBA en hızlı çalışan algoritma olduğu görülmüştür.

Kaynakça

  • [1] Güler, İ., Gökçil, Z., & Gülbandilar, E., “Evaluating of traumatic brain injuries using artificial neural networks”, Expert Systems with Applications, 36(7), 2009, 10424-10427.
  • [2] Ersöz, A., & Özşen, S., Uyku EEG Sinyalinin Yapay Sinir Ağ Modeli İle Sınıflandırılması, Elektrik-Elektronik ve Bilgisayar Sempozyumu, 2011, 298-301, Elazığ.
  • [3] Sharanreddy, M., & Kulkarni, P., “Automated EEG signal analysis for identification of epilepsy seizures and brain tumour.”, Journal of Medical Engineering & Technology, 37(8), 2013, 511-519.
  • [4] Kalaivani M, Kalaivani V and Devi VA, “Analysis of EEG Signal for the Detection of Brain Abnormalities.”, International Journal of Computer applications (IJCA), 2, 2014, 1-6.
  • [5] Gajic D.,Djurovic Z., Gennaro S.D., Gustafsson F., ”Classification of eeg signals for detection of epileptic seizured based on wavelets and statistical pattern recognition.”, Biomedical Engineering: Applications, Basis and Communications, 2014, 26(02):145021.
  • [6] O’shea A., “Neonatal seizure detection using convolutional neural networks.”, arXiv preprint arXiv: 1709.05849, 2017.
  • [7] Vieira S., Pinaya WHL., and Mechelli A.,“Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: Methods and applications.”, Neuroscience& Biobehavioral Reviews, 2017, 74:58-75.
  • [8] Chambon S., Galtier MN., Arnal P.J.,Wainrib G., and Gramfort A.,“A deep learning architecture for temporal sleep stage classification using multivariate and multimodal time series.”, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26:4, 758-769.
  • [9] İpek B, EEG sinyallerinin epileptik rahatsızlıkların teşhisi için konvolüsyonel sinir ağları ve destek vektör makineleri ile tasnif edilmesi, Yüksek Lisans Tezi, Karatay Üniversitesi, Fen Bilimleri Enstitüsü, 2018, Konya.
  • [10] Gül E, EEG sinyallerinin wavelet yöntemiyle dönüştürülerek yapay sinir ağları ile sınıflandırılması, Yüksek Lisans Tezi, Eskişehir Osmangazi Üniversitesi, Sağlık Bilimleri Enstitüsü, 2018, Eskişehir.
  • [11] Edenberg H.J, Gelernter J, Agrawal A., “Genetics of Alcoholism”, Current Psychiatry Reports 2019, 21:26.
  • [12] Rieg T, Frick J, Hitzler M, Buettner R, “High-performance detection of alcoholism by unfolding the amalgamated EEG spectra using the Random Forests method”, Proceedings of the 52nd Hawaii International Conference on Systems Sciences, 2019, 3769-3777.
  • [13] Bavkar S, Iyer B, Deosarkar S., “Detection of Alcoholism: An EEG Hybrid Features and Ensemble Subspace K-NN Based Approach” International Conference on Distributed Computing and Internet Technology, Lecture Notes in Computer Science, 2019, vol 11319, 161-168.
  • [14] Wang SH, Muhammad K, Hong J, Sangalah AK, Zhang YD, “Alcoholism identification via convolutional neural network based on parametric ReLU, dropout, and batch normalization”, Neural Computing and Applications, 2020, 32:665-680.
  • [15] Postalcıoğlu S., Tepecik H.H., EEG ile Kişiselleştirilmiş Müzik Listesi Tasarımı, 3rd International Conference on Data Science and Applications, pp. 197-201, June 25-28, 2020, Istanbul, Turkey.
  • [16] UCI, veritabanı, https://archive.ics.uci.edu/ml/datasets/eeg+database, erişim tarihi: 10 haziran 2020.
  • [17] Ge S, Yang Q, Wang R, Lin P, Gao J, Leng Y, Yang Y, Wang H., “A Brain-Computer Interface Based on a Few-Channel EEG-fNIRS Bimodal System” IEEE Access, vol 5, 2017 pp 208-218.
  • [18] Brownlee J., Recursive Feature Elimination (RFE) for Feature Selection in Python, https://machinelearningmastery.com/rfe-feature-selection-in-python/, (28 Haziran 2020).
  • [19] Choubey RN, Amar L, Khare S, “Internet traffic classifier using artificial neural network and 1D-CNN”, International Conference on Information Technology (ICIT), 2019, 291-296, Bhubaneswar, India. [20] Bhatia N, Vandana A.,. “Survey of nearest neighbor techniques”, International Journal of Computer Science and Information Security, 2010, 8(2):302-305.
  • [21] Breiman L., “Bagging Predictors” Machine Learning 24, 1996, 123–140.
  • [22] Zhou J, Li E, Wang M, Chen X, Shi X, Jiang L., “Feasibility of Stochastic Gradient Boosting Approach for Evaluating Seismic Liquefaction Potential Based on SPT and CPT Case Histories”, Journal of Performance of Constructed Facilities. 33. 2019, 04019024. 10.1061/(ASCE)CF.1943-5509.0001292.
  • [23] Powers W, Ailab A., Evaluation: From precision, recall and F-measure to ROC, informedness, markedness & correlation. J. Mach. Learn. Technol. 2., 2008, 2229-3981. 10.9735/2229-3981.
  • [24] Gülcan O., https://medium.com/@gulcanogundur/do%C4%9Fruluk-accuracy-kesinlik-precision-duyarl%C4%B1l%C4%B1k-recall-ya-da-f1-score-300c925feb38, (24 Haziran 2020).

Analysis of Predisposition to Addiction with Machıne Learning Techniques Using EEG Signals

Yıl 2021, , 142 - 154, 31.01.2021
https://doi.org/10.31202/ecjse.787726

Öz

Abstract: Diagnosis of alcohol dependence with Electroencephalography (EEG) signals is an important issue both personally and society. Today, Many people are affected by this addiction. It has physiological effects, especially the brain, heart and immune system, as well as psychological effects. EEG signals are used effectively to observe these effects. In this study, genetic predisposition to alcoholism is diagnosed using EEG signals. Firstly, data analysis was performed on the EEG signal data obtained through the database. Recursive feature selection is used. For the classification, Multilayer Artificial Neural Networks (MLPNN), 1D-Convolutional Neural Networks (CNN), XGBoost Algorithm (XGBA), Random Forest Algorithm (RFA), K-Nearest Neighbor Algorithm (K-NN) are used. It has been studied in Pyhton environment. Accuracy, precision, sensitivity and F1 Score are used for classification performance criteria. Algorithms are also compared in terms of working time. In terms of classification success, MLPNN and CNN gave the best results. In terms of running time of algorithms, XGBA is the fastest running algorithm.

Kaynakça

  • [1] Güler, İ., Gökçil, Z., & Gülbandilar, E., “Evaluating of traumatic brain injuries using artificial neural networks”, Expert Systems with Applications, 36(7), 2009, 10424-10427.
  • [2] Ersöz, A., & Özşen, S., Uyku EEG Sinyalinin Yapay Sinir Ağ Modeli İle Sınıflandırılması, Elektrik-Elektronik ve Bilgisayar Sempozyumu, 2011, 298-301, Elazığ.
  • [3] Sharanreddy, M., & Kulkarni, P., “Automated EEG signal analysis for identification of epilepsy seizures and brain tumour.”, Journal of Medical Engineering & Technology, 37(8), 2013, 511-519.
  • [4] Kalaivani M, Kalaivani V and Devi VA, “Analysis of EEG Signal for the Detection of Brain Abnormalities.”, International Journal of Computer applications (IJCA), 2, 2014, 1-6.
  • [5] Gajic D.,Djurovic Z., Gennaro S.D., Gustafsson F., ”Classification of eeg signals for detection of epileptic seizured based on wavelets and statistical pattern recognition.”, Biomedical Engineering: Applications, Basis and Communications, 2014, 26(02):145021.
  • [6] O’shea A., “Neonatal seizure detection using convolutional neural networks.”, arXiv preprint arXiv: 1709.05849, 2017.
  • [7] Vieira S., Pinaya WHL., and Mechelli A.,“Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: Methods and applications.”, Neuroscience& Biobehavioral Reviews, 2017, 74:58-75.
  • [8] Chambon S., Galtier MN., Arnal P.J.,Wainrib G., and Gramfort A.,“A deep learning architecture for temporal sleep stage classification using multivariate and multimodal time series.”, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26:4, 758-769.
  • [9] İpek B, EEG sinyallerinin epileptik rahatsızlıkların teşhisi için konvolüsyonel sinir ağları ve destek vektör makineleri ile tasnif edilmesi, Yüksek Lisans Tezi, Karatay Üniversitesi, Fen Bilimleri Enstitüsü, 2018, Konya.
  • [10] Gül E, EEG sinyallerinin wavelet yöntemiyle dönüştürülerek yapay sinir ağları ile sınıflandırılması, Yüksek Lisans Tezi, Eskişehir Osmangazi Üniversitesi, Sağlık Bilimleri Enstitüsü, 2018, Eskişehir.
  • [11] Edenberg H.J, Gelernter J, Agrawal A., “Genetics of Alcoholism”, Current Psychiatry Reports 2019, 21:26.
  • [12] Rieg T, Frick J, Hitzler M, Buettner R, “High-performance detection of alcoholism by unfolding the amalgamated EEG spectra using the Random Forests method”, Proceedings of the 52nd Hawaii International Conference on Systems Sciences, 2019, 3769-3777.
  • [13] Bavkar S, Iyer B, Deosarkar S., “Detection of Alcoholism: An EEG Hybrid Features and Ensemble Subspace K-NN Based Approach” International Conference on Distributed Computing and Internet Technology, Lecture Notes in Computer Science, 2019, vol 11319, 161-168.
  • [14] Wang SH, Muhammad K, Hong J, Sangalah AK, Zhang YD, “Alcoholism identification via convolutional neural network based on parametric ReLU, dropout, and batch normalization”, Neural Computing and Applications, 2020, 32:665-680.
  • [15] Postalcıoğlu S., Tepecik H.H., EEG ile Kişiselleştirilmiş Müzik Listesi Tasarımı, 3rd International Conference on Data Science and Applications, pp. 197-201, June 25-28, 2020, Istanbul, Turkey.
  • [16] UCI, veritabanı, https://archive.ics.uci.edu/ml/datasets/eeg+database, erişim tarihi: 10 haziran 2020.
  • [17] Ge S, Yang Q, Wang R, Lin P, Gao J, Leng Y, Yang Y, Wang H., “A Brain-Computer Interface Based on a Few-Channel EEG-fNIRS Bimodal System” IEEE Access, vol 5, 2017 pp 208-218.
  • [18] Brownlee J., Recursive Feature Elimination (RFE) for Feature Selection in Python, https://machinelearningmastery.com/rfe-feature-selection-in-python/, (28 Haziran 2020).
  • [19] Choubey RN, Amar L, Khare S, “Internet traffic classifier using artificial neural network and 1D-CNN”, International Conference on Information Technology (ICIT), 2019, 291-296, Bhubaneswar, India. [20] Bhatia N, Vandana A.,. “Survey of nearest neighbor techniques”, International Journal of Computer Science and Information Security, 2010, 8(2):302-305.
  • [21] Breiman L., “Bagging Predictors” Machine Learning 24, 1996, 123–140.
  • [22] Zhou J, Li E, Wang M, Chen X, Shi X, Jiang L., “Feasibility of Stochastic Gradient Boosting Approach for Evaluating Seismic Liquefaction Potential Based on SPT and CPT Case Histories”, Journal of Performance of Constructed Facilities. 33. 2019, 04019024. 10.1061/(ASCE)CF.1943-5509.0001292.
  • [23] Powers W, Ailab A., Evaluation: From precision, recall and F-measure to ROC, informedness, markedness & correlation. J. Mach. Learn. Technol. 2., 2008, 2229-3981. 10.9735/2229-3981.
  • [24] Gülcan O., https://medium.com/@gulcanogundur/do%C4%9Fruluk-accuracy-kesinlik-precision-duyarl%C4%B1l%C4%B1k-recall-ya-da-f1-score-300c925feb38, (24 Haziran 2020).
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Veysel Yarğı Bu kişi benim 0000-0002-5722-5740

Seda Postalcıoğlu 0000-0002-3188-8116

Yayımlanma Tarihi 31 Ocak 2021
Gönderilme Tarihi 29 Ağustos 2020
Kabul Tarihi 12 Ekim 2020
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

IEEE V. Yarğı ve S. Postalcıoğlu, “EEG İşareti Kullanılarak Bağımlılığa Yatkınlığın Makine Öğrenmesi Teknikleri ile Analizi”, ECJSE, c. 8, sy. 1, ss. 142–154, 2021, doi: 10.31202/ecjse.787726.