Araştırma Makalesi
BibTex RIS Kaynak Göster

2-Tienilboronik Asid: Spektroskopik, Yapısal ve Molekül Orbital Analizi Üzerine Bir DFT Çalışması

Yıl 2021, , 397 - 409, 31.01.2021
https://doi.org/10.31202/ecjse.825888

Öz

2-Tienilboronik asid ve izomerleri, Yapısal özellikler ve molekül orbitaller bakımından incelenmiştir. HOMO-LUMO sınır yüzeyleri ve FT-IR, FT-RAMAN analizleri tümleşik bir anlayışla gerçekleştirilmiştir.Molekül, bağ uzunluklar, bağ açıları ve burkulma açıları gibi yapısal özellikleri yönüyle araştırılmıştır. Molekülün izomerleri birbirinden ayrı olarak ele alınmıştır. Kuantum kimyasal hesaplamalarda, DFT yöntemi, B3LYP düzeyinde ve 6.31G* temel seti ile kullanılmıştır. Bu hesaplamalar, SPARTAN-14 hesapsal kimya paket programı kullanılarak gerçekleştirilmiştir. Hesaplanan sonuçların, literatürdeki deneysel değerlere çok yakın oldukları görülmüştür.

Destekleyen Kurum

Bursa Uludağ University, Pamukkale University,

Proje Numarası

HZL-2014/5

Teşekkür

Pamukkale Ünv Bursa Uludağ Unv

Kaynakça

  • [1] Hall D.G., Boronic acids: preparation and applications in organic synthesis and medicine, DOI:10.1002/3527606548, Wiley‐VCH Verlag GmbH & Co. KGaA, 2006
  • [2] Kar A., Pharmacognosy and Pharmacobiotechnology 2nd Ed., New Age International (P) Ltd., Publishers New Delhi 2007
  • [3] Tjarks W., Anisuzzaman A.K., Liu L., Soloway S.H., Barth R.F., Perkins D.J., Adams D.M., Synthesis and in vitro evaluation of boronated uridine and glucose derivatives for boron neutron capture therapy. J. Med. Chem., 35, 1628-1633, 1992
  • [4] Zepeda-Velazquez L. C. Synthesis and characterızation of novel stimuli-responsive silicone-boronic acid materials Ph.D. thesis McMaster University Hamilton, Ontario, 2015
  • [5] Christophersen C., Begtrup M., Ebdrup S., Petersen H., Vedsø P., Synthesis of 2,3-Substituted Thienylboronic Acids and Esters. The Journal of organic chemistry, 68(24), 9513-9516, 2003
  • [6] Wang Y., Liao J., Wang B., Chen H., Zhao H., Peng M., Fan S., Synthesis and Properties of Novel Borondipyrromethene (BODIPY)-Tethered Triphenylamine Conjugates, Aust. J. Chem., 68(10), 1485-1491. 2015
  • [7] Fang Y., Zhang X., Targeting NEK2 as a Promising Therapeutic Approach for Cancer Treatment, Cell Cycle, 15(7), 895-907, 2016
  • [8] Fa-Bao L., Xun Y., Tong-Xin L., Guan-Wu W., Fullerenyl Boronic Esters: Ferric Perchlorate-Mediated Synthesis and Functionalization, Organic Letters, 14(7), 1800-1803, 2012
  • [9] Lu G.P., Voigtritter K. R., Cai C., Lipshutz B., H., Ligand effects on the stereochemical outcome of Suzuki-Miyaura couplings. The Journal of organic chemistry, 77(8), 3700-3703, 2012
  • [10] Karabacak M., Kose E., Sas E.B., Kurt M., Asiri A.M., Atac A., DFT calculations and experimental FT-IR, FT-Raman, NMR, UV–Vis spectral studies of 3-fluorophenylboronic acid, Spectrochim. Acta, Part A, 136, 306-320, 2015
  • [11] Zheng H., Ghanbari S., Nakamura S., Hall D.G., Boronic Acid Catalysis as a Mild and Versatile Strategy for Direct Carbo- And Heterocyclizations of Free Allylic Alcohols, Angewandte Chemie Int. Ed., 51(25), 6187-6190, 2012
  • [12] Zheng H., Lejkowski M., Hall D.G., Mild and selective boronic acid-catalyzed 1,3-transposition of allylic alcohols and Meyer–Schuster rearrangement of propargylic alcohols, Chem. Sci., 2(7), 1305-1310, 2011
  • [13] Sachan A. K., Pathak S. K., Sinha L., Prasad O., Karabacak M., Asiri A. M., A combined experimental and theoretical investigation of 2-Thienylboronic acid: Conformational search, molecular structure, NBO, NLO and FT-IR, FT-Raman, NMR and UV spectral analysis. Jour. of Molec. Struct., 1076, 639-650, 2014.
  • [14] Ghosh R., Simonsen S.H., Structure of 2-(2'-thienyl)pyridine at 193 K, Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 49(5), 1031-1032, 1993.
  • [15] Rettig S.J., Trotter J., Crystal and molecular structure of phenylboronic acid (C6H5B(OH)2 Can. J. Chem. 55, 3071-3075, 1977
  • [16] Silverstein R. M., Webster F. X., Kiemle D.J. Spectrometric Identification of Organic Compounds 7th Ed. John Wiley Sons INC. 2005
  • [17] Ramachandran K. I., Deepa G., Namboori K., Computational Chemistry and Molecular Modeling: Principles and Applications, Springer-Verlag Heidelberg Berlin 2008.
  • [18] Jensen F., Introduction to Computational Chemistry, Wiley, 2016
  • [19] SPARTAN’14 Wavefunction Inc. Irvine CA, USA, 2014
  • [20] Hehre W. J., SPARTAN’14 Tutorial and User's Guide, Wavefunction, Inc 2014
  • [21] Peter K., Vollhardt C., Schore N. E.. Organic chemistry: structure and function, 6th ed. Freeman&Comp. NY-US 2011
  • [22] Rani U., Karabacak M., Tanrıverdi O., Kurt M., Sundaraganesan N., The spectroscopic (FTIR, FT-Raman, NMR and UV), first-order hyperpolarizability and HOMO-LUMO analysis of methyl boronic acid. Spectrochim. Acta, Part A, 92, 67-77, 2012.
  • [23] Karabacak M., Kose E., Atac A., M. Cipiloglu A., Kurt M., Molecular structure investigation and spectroscopic studies on 2,3-difluorophenylboronic acid: A combined experimental and theoretical analysis. Spectrochim. Acta, Part A, 97, 892-908, 2012
  • [24] https://www.sigmaaldrich.com/catalog/product/aldrich/436836?lang=en&region=TR 04/23/2020

2-Thienylboronic Acid: A DFT Study For The Spectral, Structural And Molecular Orbital Analysis

Yıl 2021, , 397 - 409, 31.01.2021
https://doi.org/10.31202/ecjse.825888

Öz

2-Thienylboronic acid and its isomers were investigated for their structural properties and molecular orbitals. HOMO-LUMO frontier surfaces and FT-IR, FT-RAMAN analysis were carried out in an integrated approach. The molecule was investigated for its structural properties such as bond lengths, bond angles and torsion angles. The molecule was examined as isomers separately. For quantum chemical calculations, DFT was used in the B3LYP level and 6.31G* basis set. These calculations were carried out via SPARTAN-14 computational chemistry software. The calculated results were compared and found to be very close to some previous experimental ones.

Proje Numarası

HZL-2014/5

Kaynakça

  • [1] Hall D.G., Boronic acids: preparation and applications in organic synthesis and medicine, DOI:10.1002/3527606548, Wiley‐VCH Verlag GmbH & Co. KGaA, 2006
  • [2] Kar A., Pharmacognosy and Pharmacobiotechnology 2nd Ed., New Age International (P) Ltd., Publishers New Delhi 2007
  • [3] Tjarks W., Anisuzzaman A.K., Liu L., Soloway S.H., Barth R.F., Perkins D.J., Adams D.M., Synthesis and in vitro evaluation of boronated uridine and glucose derivatives for boron neutron capture therapy. J. Med. Chem., 35, 1628-1633, 1992
  • [4] Zepeda-Velazquez L. C. Synthesis and characterızation of novel stimuli-responsive silicone-boronic acid materials Ph.D. thesis McMaster University Hamilton, Ontario, 2015
  • [5] Christophersen C., Begtrup M., Ebdrup S., Petersen H., Vedsø P., Synthesis of 2,3-Substituted Thienylboronic Acids and Esters. The Journal of organic chemistry, 68(24), 9513-9516, 2003
  • [6] Wang Y., Liao J., Wang B., Chen H., Zhao H., Peng M., Fan S., Synthesis and Properties of Novel Borondipyrromethene (BODIPY)-Tethered Triphenylamine Conjugates, Aust. J. Chem., 68(10), 1485-1491. 2015
  • [7] Fang Y., Zhang X., Targeting NEK2 as a Promising Therapeutic Approach for Cancer Treatment, Cell Cycle, 15(7), 895-907, 2016
  • [8] Fa-Bao L., Xun Y., Tong-Xin L., Guan-Wu W., Fullerenyl Boronic Esters: Ferric Perchlorate-Mediated Synthesis and Functionalization, Organic Letters, 14(7), 1800-1803, 2012
  • [9] Lu G.P., Voigtritter K. R., Cai C., Lipshutz B., H., Ligand effects on the stereochemical outcome of Suzuki-Miyaura couplings. The Journal of organic chemistry, 77(8), 3700-3703, 2012
  • [10] Karabacak M., Kose E., Sas E.B., Kurt M., Asiri A.M., Atac A., DFT calculations and experimental FT-IR, FT-Raman, NMR, UV–Vis spectral studies of 3-fluorophenylboronic acid, Spectrochim. Acta, Part A, 136, 306-320, 2015
  • [11] Zheng H., Ghanbari S., Nakamura S., Hall D.G., Boronic Acid Catalysis as a Mild and Versatile Strategy for Direct Carbo- And Heterocyclizations of Free Allylic Alcohols, Angewandte Chemie Int. Ed., 51(25), 6187-6190, 2012
  • [12] Zheng H., Lejkowski M., Hall D.G., Mild and selective boronic acid-catalyzed 1,3-transposition of allylic alcohols and Meyer–Schuster rearrangement of propargylic alcohols, Chem. Sci., 2(7), 1305-1310, 2011
  • [13] Sachan A. K., Pathak S. K., Sinha L., Prasad O., Karabacak M., Asiri A. M., A combined experimental and theoretical investigation of 2-Thienylboronic acid: Conformational search, molecular structure, NBO, NLO and FT-IR, FT-Raman, NMR and UV spectral analysis. Jour. of Molec. Struct., 1076, 639-650, 2014.
  • [14] Ghosh R., Simonsen S.H., Structure of 2-(2'-thienyl)pyridine at 193 K, Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 49(5), 1031-1032, 1993.
  • [15] Rettig S.J., Trotter J., Crystal and molecular structure of phenylboronic acid (C6H5B(OH)2 Can. J. Chem. 55, 3071-3075, 1977
  • [16] Silverstein R. M., Webster F. X., Kiemle D.J. Spectrometric Identification of Organic Compounds 7th Ed. John Wiley Sons INC. 2005
  • [17] Ramachandran K. I., Deepa G., Namboori K., Computational Chemistry and Molecular Modeling: Principles and Applications, Springer-Verlag Heidelberg Berlin 2008.
  • [18] Jensen F., Introduction to Computational Chemistry, Wiley, 2016
  • [19] SPARTAN’14 Wavefunction Inc. Irvine CA, USA, 2014
  • [20] Hehre W. J., SPARTAN’14 Tutorial and User's Guide, Wavefunction, Inc 2014
  • [21] Peter K., Vollhardt C., Schore N. E.. Organic chemistry: structure and function, 6th ed. Freeman&Comp. NY-US 2011
  • [22] Rani U., Karabacak M., Tanrıverdi O., Kurt M., Sundaraganesan N., The spectroscopic (FTIR, FT-Raman, NMR and UV), first-order hyperpolarizability and HOMO-LUMO analysis of methyl boronic acid. Spectrochim. Acta, Part A, 92, 67-77, 2012.
  • [23] Karabacak M., Kose E., Atac A., M. Cipiloglu A., Kurt M., Molecular structure investigation and spectroscopic studies on 2,3-difluorophenylboronic acid: A combined experimental and theoretical analysis. Spectrochim. Acta, Part A, 97, 892-908, 2012
  • [24] https://www.sigmaaldrich.com/catalog/product/aldrich/436836?lang=en&region=TR 04/23/2020
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Ahmet Kunduracıoğlu 0000-0002-6421-9912

Proje Numarası HZL-2014/5
Yayımlanma Tarihi 31 Ocak 2021
Gönderilme Tarihi 14 Kasım 2020
Kabul Tarihi 17 Aralık 2020
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

IEEE A. Kunduracıoğlu, “2-Thienylboronic Acid: A DFT Study For The Spectral, Structural And Molecular Orbital Analysis”, ECJSE, c. 8, sy. 1, ss. 397–409, 2021, doi: 10.31202/ecjse.825888.