Araştırma Makalesi
BibTex RIS Kaynak Göster

Mikro İşlemciler için Etilen Soğutmalı Mikro Kanallı Isı Değiştiricinin Tasarımı ve Simülasyonu

Yıl 2021, , 1243 - 1253, 30.09.2021
https://doi.org/10.31202/ecjse.909855

Öz

Bu çalışmada hava soğutmalı mikroişlemcili ısı emiciler yerine etilen ile çalışan mikrokanallı bir ısı değiştirici önerilmiş ve Flo-EFD yazılımı kullanılarak akış ve ısı transferi simülasyonları yapılmıştır. Öncelikle hava soğutmalı soğutucu için bilgisayar kasasındaki hava havmi ve mikroişlemcinin sıcaklık dağılımı elde edilmiş, ardından fan yardımı ile dışarıdan gelen havanın akış yolları gözlemlenmiştir. Daha sonra önerilen mikrokanallı ısı değiştiricisi kullanılan sistem aynı işlemlere tabi tutulmuş ve sonuçlar karşılaştırılmıştır. Çalışma sonucunda mikrokanallı ısı değiştiricinin işlemci sıcaklığını 54-55°C'den 18-19°C'ye düşürdüğü ortaya çıkmıştır. Soğutucunun çıkarılmasının, dış ortamdan çekilen havanın bilgisayar kasasındaki diğer ısı üreten elemanlar etrafında daha verimli bir şekilde dolaşmasına izin verdiği de gözlemlenmiştir. Böylelikle bilgisayar kasası içerisinde daha homojen ve daha düşük sıcaklık dağılımı elde edilmiştir.

Destekleyen Kurum

Karabük Üniversitesi

Kaynakça

  • 1. Cheng, L. and Thome, J. R., "Cooling of microprocessors using flow boiling of CO2 in a micro-evaporator: Preliminary analysis and performance comparison", Applied Thermal Engineering, 29 (11–12): 2426–2432 (2009).
  • 2. Hatami, M. and Ganji, D. D., "Thermal and flow analysis of microchannel heat sink (MCHS) cooled by Cu-water nanofluid using porous media approach and least square method", Energy Conversion And Management, 78: 347–358 (2014).
  • 3. Ariyo, D. O. and Bello-Ochende, T., "Constructal design of subcooled microchannel heat exchangers", International Journal Of Heat And Mass Transfer, 146: 118835 (2020).
  • 4. Devahdhanush, V. S., Lei, Y., Chen, Z., and Mudawar, I., "Assessing advantages and disadvantages of macro- and micro-channel flow boiling for high-heat-flux thermal management using computational and theoretical/empirical methods", International Journal Of Heat And Mass Transfer, 169: 120787 (2021).
  • 5. Ghazvini, M. and Shokouhmand, H., "Investigation of a nanofluid-cooled microchannel heat sink using Fin and porous media approaches", Energy Conversion And Management, 50 (9): 2373–2380 (2009).
  • 6. Sai Suhruth Teja, K., "Optimization of parameters and fabrication of micro channel heat sinks using micro scanning EDM and grey relational analysis", Materials Today: Proceedings, (xxxx): (2021).
  • 7. Gerken, I., Brandner, J. J., and Dittmeyer, R., "Heat transfer enhancement with gas-to-gas micro heat exchangers", Applied Thermal Engineering, 93: 1410–1416 (2016).
  • 8. Deng, Y., Menon, S., Lavrich, Z., Wang, H., and Hagen, C. L., "Design, simulation, and testing of a novel micro-channel heat exchanger for natural gas cooling in automotive applications", Applied Thermal Engineering, 110: 327–334 (2017).
  • 9. Internet: Maganti, L. S., Dhar, P., Sundararajan, T., and Das, S. K., "Heat Spreader with Parallel Microchannel Configurations Employing Nanofluids for near–Active Cooling of MEMS", http://dx.doi.org/10.1016/j.ijheatmasstransfer.2017.04.032 .
  • 10. García-Hernando, N., Acosta-Iborra, A., Ruiz-Rivas, U., and Izquierdo, M., "Experimental investigation of fluid flow and heat transfer in a single-phase liquid flow micro-heat exchanger", International Journal Of Heat And Mass Transfer, 52 (23–24): 5433–5446 (2009).
  • 11. Yang, Y., Morini, G. L., and Brandner, J. J., "Experimental analysis of the influence of wall axial conduction on gas-to-gas micro heat exchanger effectiveness", International Journal Of Heat And Mass Transfer, 69: 17–25 (2014).
  • 12. Dondapati, R. S., Saini, V., Verma, K. N., and Usurumarti, P. R., "Computational prediction of pressure drop and heat transfer with cryogen based nanofluids to be used in micro-heat exchangers", International Journal Of Mechanical Sciences, 130 (June): 133–142 (2017).
  • 13. Kang, S. W. and Tseng, S. C., "Analysis of effectiveness and pressure drop in micro cross-flow heat exchanger", Applied Thermal Engineering, 27 (5–6): 877–885 (2007).
  • 14. Marcinichen, J. B., Thome, J. R., and Michel, B., "Cooling of microprocessors with micro-evaporation: A novel two-phase cooling cycle", International Journal Of Refrigeration, 33 (7): 1264–1276 (2010).
  • 15. Jajja, S. A., Ali, W., Ali, H. M., and Ali, A. M., "Water cooled minichannel heat sinks for microprocessor cooling: Effect of fin spacing", Applied Thermal Engineering, 64 (1–2): 76–82 (2014).

Design and Simulation of Ethylene Cooled Microchannel Heat Exchanger for Micro Processors

Yıl 2021, , 1243 - 1253, 30.09.2021
https://doi.org/10.31202/ecjse.909855

Öz

Abstract: In this study, a microchannel heat exchanger with operating with ethylene was proposed instead of air-cooled microprocessor heat sinks and flow and heat transfer simulations were made using Flo-EFD software. First, the temperature distribution of the air domain and the microprocessor in the computer case was obtained for air-cooled heat sink, and then the flow paths of the air coming from the outside with the help of the fan were observed. Afterwards, the system with the proposed micro channel heat exchanger was subjected to the same processes and the results were compared. As a result of the study, it was revealed that the micro channel heat exchanger reduced the processor temperature between 54-55°C and 18-19°C. It has also been observed that removing the heat sink allows the air drawn from the outside environment to circulate more efficiently around other heat generating elements in the computer case. Hence more homogeneous and lower temperature distribution within the computer case was obtained.

Kaynakça

  • 1. Cheng, L. and Thome, J. R., "Cooling of microprocessors using flow boiling of CO2 in a micro-evaporator: Preliminary analysis and performance comparison", Applied Thermal Engineering, 29 (11–12): 2426–2432 (2009).
  • 2. Hatami, M. and Ganji, D. D., "Thermal and flow analysis of microchannel heat sink (MCHS) cooled by Cu-water nanofluid using porous media approach and least square method", Energy Conversion And Management, 78: 347–358 (2014).
  • 3. Ariyo, D. O. and Bello-Ochende, T., "Constructal design of subcooled microchannel heat exchangers", International Journal Of Heat And Mass Transfer, 146: 118835 (2020).
  • 4. Devahdhanush, V. S., Lei, Y., Chen, Z., and Mudawar, I., "Assessing advantages and disadvantages of macro- and micro-channel flow boiling for high-heat-flux thermal management using computational and theoretical/empirical methods", International Journal Of Heat And Mass Transfer, 169: 120787 (2021).
  • 5. Ghazvini, M. and Shokouhmand, H., "Investigation of a nanofluid-cooled microchannel heat sink using Fin and porous media approaches", Energy Conversion And Management, 50 (9): 2373–2380 (2009).
  • 6. Sai Suhruth Teja, K., "Optimization of parameters and fabrication of micro channel heat sinks using micro scanning EDM and grey relational analysis", Materials Today: Proceedings, (xxxx): (2021).
  • 7. Gerken, I., Brandner, J. J., and Dittmeyer, R., "Heat transfer enhancement with gas-to-gas micro heat exchangers", Applied Thermal Engineering, 93: 1410–1416 (2016).
  • 8. Deng, Y., Menon, S., Lavrich, Z., Wang, H., and Hagen, C. L., "Design, simulation, and testing of a novel micro-channel heat exchanger for natural gas cooling in automotive applications", Applied Thermal Engineering, 110: 327–334 (2017).
  • 9. Internet: Maganti, L. S., Dhar, P., Sundararajan, T., and Das, S. K., "Heat Spreader with Parallel Microchannel Configurations Employing Nanofluids for near–Active Cooling of MEMS", http://dx.doi.org/10.1016/j.ijheatmasstransfer.2017.04.032 .
  • 10. García-Hernando, N., Acosta-Iborra, A., Ruiz-Rivas, U., and Izquierdo, M., "Experimental investigation of fluid flow and heat transfer in a single-phase liquid flow micro-heat exchanger", International Journal Of Heat And Mass Transfer, 52 (23–24): 5433–5446 (2009).
  • 11. Yang, Y., Morini, G. L., and Brandner, J. J., "Experimental analysis of the influence of wall axial conduction on gas-to-gas micro heat exchanger effectiveness", International Journal Of Heat And Mass Transfer, 69: 17–25 (2014).
  • 12. Dondapati, R. S., Saini, V., Verma, K. N., and Usurumarti, P. R., "Computational prediction of pressure drop and heat transfer with cryogen based nanofluids to be used in micro-heat exchangers", International Journal Of Mechanical Sciences, 130 (June): 133–142 (2017).
  • 13. Kang, S. W. and Tseng, S. C., "Analysis of effectiveness and pressure drop in micro cross-flow heat exchanger", Applied Thermal Engineering, 27 (5–6): 877–885 (2007).
  • 14. Marcinichen, J. B., Thome, J. R., and Michel, B., "Cooling of microprocessors with micro-evaporation: A novel two-phase cooling cycle", International Journal Of Refrigeration, 33 (7): 1264–1276 (2010).
  • 15. Jajja, S. A., Ali, W., Ali, H. M., and Ali, A. M., "Water cooled minichannel heat sinks for microprocessor cooling: Effect of fin spacing", Applied Thermal Engineering, 64 (1–2): 76–82 (2014).
Toplam 15 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Büşra Tom 0000-0001-8219-3069

Erhan Kayabaşı 0000-0002-3603-6211

Yayımlanma Tarihi 30 Eylül 2021
Gönderilme Tarihi 5 Nisan 2021
Kabul Tarihi 18 Haziran 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

IEEE B. Tom ve E. Kayabaşı, “Design and Simulation of Ethylene Cooled Microchannel Heat Exchanger for Micro Processors”, ECJSE, c. 8, sy. 3, ss. 1243–1253, 2021, doi: 10.31202/ecjse.909855.