Araştırma Makalesi
BibTex RIS Kaynak Göster

Diş ve İmplant Mikromorfolojik Yapıların Sinyal ve Görüntü İşleme Yöntemleri ile Değerlendirilmesi

Yıl 2018, Cilt: 5 Sayı: 3, 741 - 748, 30.09.2018
https://doi.org/10.31202/ecjse.417791

Öz

Çalışmanın hedefleri, bir azı
diş için bilgisayarda model oluşturmak, orjinal dişin & implant yüzey
karakteristiklerinden olan yüzey pürüzlülüklerini ölçmek ve elde edilen yüksek
çözünürlüklü görüntüleri ve sinyalleri işlemektir. Orjinal diş & implant
yüzeyleri, stylus profilometre kullanılarak deneysel olarak ölçülmüştür. 3
boyutlu (3B) dijital mikroskoptan alınan yüksek çözünürlüklü 2B görüntüler ve 1B
sinyaller, görüntü işleme tekniği olan 2B hızlı Fourier dönüşümü (FFT)
yardımıyla analiz edilmiş ve birbiriyle mukayese edilmiştir. Orjinal diş &
implant yüzeylerinin pürüzlülük sonuçları birbirinden oldukça farklı çıkmıştır.
Diğer yandan, stylus profilometreden alınan ölçüm sonuçları görüntü işleme
tekniğiyle elde edilen değerler arasındaki korelasyonun son derece yüksek
benzerlik göstermiş olduğu görülmüştür. Orjinal diş örneği için, ölçüm
hatalarının karelerinin ortalamasının karekökü (RMSE) değeri 0,033 µm olarak
hesaplanırken, implant örneği için ise, 0.045 µm olarak hesaplanmıştır. Bunun
yanında, görüntü analizi sonuçları, FFT analizinin, yüksek korelasyonla
(orijinal diş için, R2 =
0.94 ve implant örnek için ise, R2
= 0.88) yüzey pürüzlülüğündeki değişkenliği temsil edebileceğini göstermiştir. Orjinal
diş ve İmplant sinyallerinin standart sapma sonuçları da pürüzlülük ilişkisini
doğrulamıştır.  

Kaynakça

  • [1] International Organization for Standardization. “Quality management systems”. Requirements for regulatory purposes. BS EN ISO 13485:2016 Medical devices, 2016.[2] International Organization for Standardization. “Medical devices for dentistry”. Dental implants. BS EN 1642:2011 Dentistry, 2011.[3] International Organization for Standardization. “Designation system for teeth and areas of the oral cavity”. BS EN ISO 3950:2016 Dentistry, 2016.[4] International Organization for Standardization. “Minimal dental implant data set for clinical use”. BS EN ISO 16498:2013 Dentistry, 2013.[5] Costa-Berenguer, X., Garcia-Garcia, M., Sanches-Torres, A., Sanz-Alonso, M., Figueiredo, R. and Valmaseda-Castellon, E. (2017). Effect of implantoplasty on fracture resistance and surface roughness of standard diameter dental implants. Clinical Oral Implants Research, vol 29, pp 46-54.[6] Rupp, F., Liang, L., Geis-Gerstorfer, J., Scheideler, L. And Hüttig, F. (2018). Surface characteristics of dental implants: A review. Dental Materials, vol 34, pp 40-57.[7] Babik, O., Czan, A., Holubjak, J., Kamenik, R. And Pilc, J. (2017). Identification of surface characteristics created by miniature machining of dental implants made of titanium based materials. Procedia Engineering, vol 192, pp 1016-1021.[8] Kournetas, N., Spintzyk, S., Schweiser, E., Sawada, T., Said, F., Schmid, P., Geis-Gerstorfer, J., Eliades, G. And Rupp, F. (2017). Comparative evaluation of topographical data ofdental implant surfaces applying opticalinterferometry and scanning electron microscopy. Dental Materials, vol 33, pp e317-e327.[9] Schmidt, K. E., Auschill, T. M., Heumann, C., Frankenberger, R., Eick, S., Sculean, A. And Arweiler, N. B. (2017). Influence of different instrumentation modalities on the surface characteristics and biofilm formation on dental implant neck, in vitro. Clinical Oral Implants Research, vol 28, pp 483-490.[10] Bosshardt, D. D., Chappuis, V. and Buser, D. (2017). Osseointegration of titanium, titanium alloy and zirconia dental implants: current knowledge and open questions. Periodontology 2000, vol 73, pp 22-40.[11] Bevilacqua, L., Milan, A., Del Lupo, V., Maglione, M. and Dolzani, L. (2018). Biofilms Developed on Dental Implant Titanium Surfaces with Different Roughness: Comparison Between In Vitro and In Vivo Studies. Current Microbiology, https://doi.org/10.1007/s00284-018-1446-8.[12] Durakbasa MN, Demircioglu P, Bas G, Pirker W. “Micro-examination of dental samples to enable the quality characteristics required by the clinical experience using biomedical metrology”. 26th MicroCAD International Scientific Conference, 2012.[13] Pirker W, Kocher A. “Immediate, non-submerged, root-analogue zirconia implant in single tooth replacement”. International Journal of Oral and Maxillofacial Surgery, 37, 293-295, 2008.[14] International Organization for Standardization. “Surface texture: Profile method”. Terms, definitions and surface texture parameters. BS EN ISO 4287:1998+A1:2009 Geometrical product specification (GPS), 2009.[15] Demircioglu P. “Estimation of Surface Topography for Dental Implants using Advanced Metrological Technology and Digital Image Processing Techniques, Measurement”. ELSEVIER, ISSN: 0263-2241, DOI No: 10.1016/j.measurement.2013.10.036, 48, 43-53, 2014.
Yıl 2018, Cilt: 5 Sayı: 3, 741 - 748, 30.09.2018
https://doi.org/10.31202/ecjse.417791

Öz

Kaynakça

  • [1] International Organization for Standardization. “Quality management systems”. Requirements for regulatory purposes. BS EN ISO 13485:2016 Medical devices, 2016.[2] International Organization for Standardization. “Medical devices for dentistry”. Dental implants. BS EN 1642:2011 Dentistry, 2011.[3] International Organization for Standardization. “Designation system for teeth and areas of the oral cavity”. BS EN ISO 3950:2016 Dentistry, 2016.[4] International Organization for Standardization. “Minimal dental implant data set for clinical use”. BS EN ISO 16498:2013 Dentistry, 2013.[5] Costa-Berenguer, X., Garcia-Garcia, M., Sanches-Torres, A., Sanz-Alonso, M., Figueiredo, R. and Valmaseda-Castellon, E. (2017). Effect of implantoplasty on fracture resistance and surface roughness of standard diameter dental implants. Clinical Oral Implants Research, vol 29, pp 46-54.[6] Rupp, F., Liang, L., Geis-Gerstorfer, J., Scheideler, L. And Hüttig, F. (2018). Surface characteristics of dental implants: A review. Dental Materials, vol 34, pp 40-57.[7] Babik, O., Czan, A., Holubjak, J., Kamenik, R. And Pilc, J. (2017). Identification of surface characteristics created by miniature machining of dental implants made of titanium based materials. Procedia Engineering, vol 192, pp 1016-1021.[8] Kournetas, N., Spintzyk, S., Schweiser, E., Sawada, T., Said, F., Schmid, P., Geis-Gerstorfer, J., Eliades, G. And Rupp, F. (2017). Comparative evaluation of topographical data ofdental implant surfaces applying opticalinterferometry and scanning electron microscopy. Dental Materials, vol 33, pp e317-e327.[9] Schmidt, K. E., Auschill, T. M., Heumann, C., Frankenberger, R., Eick, S., Sculean, A. And Arweiler, N. B. (2017). Influence of different instrumentation modalities on the surface characteristics and biofilm formation on dental implant neck, in vitro. Clinical Oral Implants Research, vol 28, pp 483-490.[10] Bosshardt, D. D., Chappuis, V. and Buser, D. (2017). Osseointegration of titanium, titanium alloy and zirconia dental implants: current knowledge and open questions. Periodontology 2000, vol 73, pp 22-40.[11] Bevilacqua, L., Milan, A., Del Lupo, V., Maglione, M. and Dolzani, L. (2018). Biofilms Developed on Dental Implant Titanium Surfaces with Different Roughness: Comparison Between In Vitro and In Vivo Studies. Current Microbiology, https://doi.org/10.1007/s00284-018-1446-8.[12] Durakbasa MN, Demircioglu P, Bas G, Pirker W. “Micro-examination of dental samples to enable the quality characteristics required by the clinical experience using biomedical metrology”. 26th MicroCAD International Scientific Conference, 2012.[13] Pirker W, Kocher A. “Immediate, non-submerged, root-analogue zirconia implant in single tooth replacement”. International Journal of Oral and Maxillofacial Surgery, 37, 293-295, 2008.[14] International Organization for Standardization. “Surface texture: Profile method”. Terms, definitions and surface texture parameters. BS EN ISO 4287:1998+A1:2009 Geometrical product specification (GPS), 2009.[15] Demircioglu P. “Estimation of Surface Topography for Dental Implants using Advanced Metrological Technology and Digital Image Processing Techniques, Measurement”. ELSEVIER, ISSN: 0263-2241, DOI No: 10.1016/j.measurement.2013.10.036, 48, 43-53, 2014.
Toplam 1 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Pınar Demircioğlu

Yayımlanma Tarihi 30 Eylül 2018
Gönderilme Tarihi 22 Nisan 2018
Kabul Tarihi 6 Temmuz 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 5 Sayı: 3

Kaynak Göster

IEEE P. Demircioğlu, “Diş ve İmplant Mikromorfolojik Yapıların Sinyal ve Görüntü İşleme Yöntemleri ile Değerlendirilmesi”, ECJSE, c. 5, sy. 3, ss. 741–748, 2018, doi: 10.31202/ecjse.417791.