Araştırma Makalesi
BibTex RIS Kaynak Göster

Solarmeter Design for High Solar Radiation Measurement and Experimental Validation

Yıl 2019, Cilt: 6 Sayı: 3, 726 - 735, 30.09.2019
https://doi.org/10.31202/ecjse.575642

Öz

In this study, a solar meter was designed to measure high solar radiation. The solar meter uses the characteristic properties of a solar cell in order to measure solar radiation. In this way, measurements can be carried out without any limitations. The solar radiation equation was entered into the ARDUINO microcontroller in the solar meter, and the results were compared through another commercial solar meter. These results were entered into STATGRAPHIC software and three different functions with high regression values were obtained. These three functions were entered into the Arduino microcontroller and the experiments were repeated. According to the comparisons made using commercial device, R2 values were determined as 0.944, 0.936, 0.938, and 0.986 for the first equation and for three different functions, respectively. Based on the values obtained, it has been determined that the solar meter can make highly accurate measurements and after the development of appropriate functions, it can be employed especially in high solar radiation concentrated systems.

Kaynakça

  • [1] Olano, X., Sallaberry, F., Garcia de Jalon, A., Gaston, M.: The influence of sky conditions on the standardized calibration of pyranometers and on the measurement of global solar irradiation. Solar Energy. 121, 116–122 (2015).
  • [2] Abbasi, A. A., and Qureshi, M. S.: Estimating global, diffuse solar radiation for Chhor and validation with satellite-based data. Arabian Journal for Science and Engineering. 39.1, 175-179 (2014). [
  • 3] Shi, G., Qiu, X., Zeng, Y.: New method for estimating daily global solar radiation over sloped topography in China. Advances in Atmospheric Sciences. 35.3, 285-295 (2018).
  • [4] El Mghouchi, Y., El Bouardi, A., Choulli, Z., Ajzoul, T: New model to estimate and evaluate the solar radiation. International Journal of Sustainable Built Environment. 3, 225–234 (2014).
  • [5] Bakirci, K.: Prediction of global solar radiation and comparison with satellite data. Journal of Atmospheric and Solar-Terrestrial Physics. 152, 41–49 (2017).
  • [6] Almorox, J.: Estimating global solar radiation from common meteorological data in Aranjuez Spain. Turk J Phys. 35, 53 – 64 (2011).
  • [7] Guermoui, M., Rabehi, A., Gairaa, K., Benkaciali, S.: Support vector regression methodology for estimating global solar radiation in Algeria. The European Physical Journal Plus. 133(1), 22 (2018).
  • [8] Meza, F. J., & Yebra, M. L.: Estimation of daily global solar radiation as a function of routine meteorological data in Mediterranean areas. Theoretical and applied climatology. 125, 479-488 (2016).
  • [9] Razagui, A., Bachari, N. I., Bouchouicha, K., Arab, A. H.: Modeling the Global Solar Radiation Under Cloudy Sky Using Meteosat Second Generation High Resolution Visible Raw Data. Journal of the Indian Society of Remote Sensing. 45(4), 725-732 (2017).
  • [10] Sartarelli, A., Vera, S., Echarri, R., Cyrulies, E., Samson, I., Heat flux solarimeter. Solar Energy. 84, 2173–2178 (2010).
  • [11] Menyhart, L., Anda, A., Nagy, Z:, A new method for checking the leveling of pyranometers. Solar Energy.120, 25–34 (2015).
  • [12] Baltazar, J.C., Sun, Y., Haberl, J.: Improved methodology to evaluate clear-sky direct normal irradiance with a multi-pyranometer array. Solar Energy. 121, 123–130 (2015).
  • [13] Boyd, M.: Methodology and calculator for high precision regression fits of pyranometer angular responsivities and the associated uncertainties. Solar Energy. 119, 233–242 (2015).
  • [14] Srikrishnan, V., Young, G.S., Witmer, L.T., Brownson, J.R.S.: Using multi-pyranometer arrays and neural networks to estimate direct normal irradiance. Solar Energy. 119, 531–542 (2015).
  • [15] Lester, A., Myers, D.R.: A method for improving global pyranometer measurements by modeling responsivity functions. Solar Energy. 80, 322–331 (2006).
  • [16] Simon-Martin, M., Alonso-Tristan, C., Gonzalez-Pen, D., Diez-Mediavilla, M.: New device for the simultaneous measurement of diffuse solar irradiance on several azimuth and tilting angles. Solar Energy. 119, 370–382 (2015).
  • [17] Rahbar N, Asadi A.: Solar intensity measurement using a thermoelectric module; experimental study and mathematical modeling, Energy Conversion and Management, 2016; 129: 344–353.
  • [18] Badran, O., Al-Salaymeh, A., El-Tous, Y., Abdala, W.: Design and testing of an innovative solar radiation measurement device. Energy Conversion and Management. 51, 1616–1620 (2010).
  • [19] Ceylan, İ., Gurel, A.E., Ergun, A., Tabak, A.: Performance analysis of a concentrated photovoltaic and thermal system. Solar Energy. 129, 217–223 (2016).
  • [20] Renno, C., Petito, F.: Design and modeling of a concentrated photovoltaic thermal (CPV/T) system for a domestic application. Energy Build. 62, 392–402 (2013).
  • [21] Kerzmann, T., Schaefer, L.: System simulation of a linear concentrated photovoltaic system with an active cooling system. Renew. Energy. 41, 254–261 (2012).
  • [22] Du, B., Hu, E., Kolhe, M.: Performance analysis of water cooled concentrated photovoltaic (CPV) system. Renew. Sustain. Energy Rev. 16 (9), 6732–6736, (2012).
  • [23] Witte, J.F., Huijsing, J.H., Makinwa, K. A.: A current-feedback instrumentation amplifier with 5 offset for bidirectional high-side current-sensing. IEEE Journal of Solid-State Circuits. 43(12), 2769-2775 (2008).
  • [24] Adafruit Industries: “INA219 High Side DC Current Sensor Breakout - 26V ±3.2A Max”, http://www.adafruit.com/products/904 (2006), Accessed 14 November 2016.
  • [25] Texas Instruments: "Zero-Drift Bi-Directional CURRENT/POWER MONITOR with I2C Interface", http://www.ti.com/lit/ds/symlink/ina219.pdf, (2015) 14 November 2016.
  • [26] Infineon Technologies: “40V-75V N-Channel Power MOSFET”, http://www.irf.com/product-info/datasheets/data/irf3205.pdf, (2001) 14 November 2016.
  • [27] Arduino, SA “Arduino Uno”: https://www.arduino.cc/en/Main/ArduinoBoardUno, (2016). November 2016.
  • [28] “Understanding and minimizing ADC conversion errors", Application Note ST Microcontroller Division Applications, March (2003).

Yüksek Güneş Işınımı Ölçümü için Solar Metre Tasarımı ve Deneysel Doğrulanması

Yıl 2019, Cilt: 6 Sayı: 3, 726 - 735, 30.09.2019
https://doi.org/10.31202/ecjse.575642

Öz

Yapılan bu çalışmada, yüksek güneş ışınımını ölçmek için bir solar metre tasarlanmıştır. Solar metre bir solar hücrenin karakteristik özelliklerini kullanarak güneş ışınımı ölçebilmektedir. Bu sayede herhangi bir sınırlama olmadan ölçüm yapılabilmektedir. Güneş ışınımı eşitlikleri ARDUINO mikro kontrol kartı aracılığıyla tasarlanan solar metreye girilmiştir ve başka bir ticari solar metre ile karşılaştırılmıştır. Bu sonuçlar STATGRAPICH programına işlenerek yüksek regresyon oranına sahip 3 farklı fonksiyon elde edilmiştir. Bu 3 fonksiyon tekrar ARDUINO mikro kontrol kartına girilerek deneyler tekrarlanmıştır. Ticari cihaz ile karşılaştırıldığında elde edilen R2 değerleri birinci eşitlik için 0.944 ve 3 farklı fonksiyon içinse sırasıyla 0.936, 0.939 ve 0.986 olarak tespit edilmiştir. Elde edilen değerlere dayanarak, tasarlanan solar metrenin oldukça hassas ölçümler yapabileceği ve uygun fonksiyonların geliştirilmesinden sonra, özellikle yüksek güneş radyasyonlu yoğunlaştırıcılı sistemlerde kullanılabileceği belirlenmiştir.


Kaynakça

  • [1] Olano, X., Sallaberry, F., Garcia de Jalon, A., Gaston, M.: The influence of sky conditions on the standardized calibration of pyranometers and on the measurement of global solar irradiation. Solar Energy. 121, 116–122 (2015).
  • [2] Abbasi, A. A., and Qureshi, M. S.: Estimating global, diffuse solar radiation for Chhor and validation with satellite-based data. Arabian Journal for Science and Engineering. 39.1, 175-179 (2014). [
  • 3] Shi, G., Qiu, X., Zeng, Y.: New method for estimating daily global solar radiation over sloped topography in China. Advances in Atmospheric Sciences. 35.3, 285-295 (2018).
  • [4] El Mghouchi, Y., El Bouardi, A., Choulli, Z., Ajzoul, T: New model to estimate and evaluate the solar radiation. International Journal of Sustainable Built Environment. 3, 225–234 (2014).
  • [5] Bakirci, K.: Prediction of global solar radiation and comparison with satellite data. Journal of Atmospheric and Solar-Terrestrial Physics. 152, 41–49 (2017).
  • [6] Almorox, J.: Estimating global solar radiation from common meteorological data in Aranjuez Spain. Turk J Phys. 35, 53 – 64 (2011).
  • [7] Guermoui, M., Rabehi, A., Gairaa, K., Benkaciali, S.: Support vector regression methodology for estimating global solar radiation in Algeria. The European Physical Journal Plus. 133(1), 22 (2018).
  • [8] Meza, F. J., & Yebra, M. L.: Estimation of daily global solar radiation as a function of routine meteorological data in Mediterranean areas. Theoretical and applied climatology. 125, 479-488 (2016).
  • [9] Razagui, A., Bachari, N. I., Bouchouicha, K., Arab, A. H.: Modeling the Global Solar Radiation Under Cloudy Sky Using Meteosat Second Generation High Resolution Visible Raw Data. Journal of the Indian Society of Remote Sensing. 45(4), 725-732 (2017).
  • [10] Sartarelli, A., Vera, S., Echarri, R., Cyrulies, E., Samson, I., Heat flux solarimeter. Solar Energy. 84, 2173–2178 (2010).
  • [11] Menyhart, L., Anda, A., Nagy, Z:, A new method for checking the leveling of pyranometers. Solar Energy.120, 25–34 (2015).
  • [12] Baltazar, J.C., Sun, Y., Haberl, J.: Improved methodology to evaluate clear-sky direct normal irradiance with a multi-pyranometer array. Solar Energy. 121, 123–130 (2015).
  • [13] Boyd, M.: Methodology and calculator for high precision regression fits of pyranometer angular responsivities and the associated uncertainties. Solar Energy. 119, 233–242 (2015).
  • [14] Srikrishnan, V., Young, G.S., Witmer, L.T., Brownson, J.R.S.: Using multi-pyranometer arrays and neural networks to estimate direct normal irradiance. Solar Energy. 119, 531–542 (2015).
  • [15] Lester, A., Myers, D.R.: A method for improving global pyranometer measurements by modeling responsivity functions. Solar Energy. 80, 322–331 (2006).
  • [16] Simon-Martin, M., Alonso-Tristan, C., Gonzalez-Pen, D., Diez-Mediavilla, M.: New device for the simultaneous measurement of diffuse solar irradiance on several azimuth and tilting angles. Solar Energy. 119, 370–382 (2015).
  • [17] Rahbar N, Asadi A.: Solar intensity measurement using a thermoelectric module; experimental study and mathematical modeling, Energy Conversion and Management, 2016; 129: 344–353.
  • [18] Badran, O., Al-Salaymeh, A., El-Tous, Y., Abdala, W.: Design and testing of an innovative solar radiation measurement device. Energy Conversion and Management. 51, 1616–1620 (2010).
  • [19] Ceylan, İ., Gurel, A.E., Ergun, A., Tabak, A.: Performance analysis of a concentrated photovoltaic and thermal system. Solar Energy. 129, 217–223 (2016).
  • [20] Renno, C., Petito, F.: Design and modeling of a concentrated photovoltaic thermal (CPV/T) system for a domestic application. Energy Build. 62, 392–402 (2013).
  • [21] Kerzmann, T., Schaefer, L.: System simulation of a linear concentrated photovoltaic system with an active cooling system. Renew. Energy. 41, 254–261 (2012).
  • [22] Du, B., Hu, E., Kolhe, M.: Performance analysis of water cooled concentrated photovoltaic (CPV) system. Renew. Sustain. Energy Rev. 16 (9), 6732–6736, (2012).
  • [23] Witte, J.F., Huijsing, J.H., Makinwa, K. A.: A current-feedback instrumentation amplifier with 5 offset for bidirectional high-side current-sensing. IEEE Journal of Solid-State Circuits. 43(12), 2769-2775 (2008).
  • [24] Adafruit Industries: “INA219 High Side DC Current Sensor Breakout - 26V ±3.2A Max”, http://www.adafruit.com/products/904 (2006), Accessed 14 November 2016.
  • [25] Texas Instruments: "Zero-Drift Bi-Directional CURRENT/POWER MONITOR with I2C Interface", http://www.ti.com/lit/ds/symlink/ina219.pdf, (2015) 14 November 2016.
  • [26] Infineon Technologies: “40V-75V N-Channel Power MOSFET”, http://www.irf.com/product-info/datasheets/data/irf3205.pdf, (2001) 14 November 2016.
  • [27] Arduino, SA “Arduino Uno”: https://www.arduino.cc/en/Main/ArduinoBoardUno, (2016). November 2016.
  • [28] “Understanding and minimizing ADC conversion errors", Application Note ST Microcontroller Division Applications, March (2003).
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Alper Ergün 0000-0003-0402-4088

İlhan Ceylan Bu kişi benim

Mustafa Aydın

Ali Etem Gürel 0000-0003-1430-8041

Gökçe Koçbulut Bu kişi benim

Yayımlanma Tarihi 30 Eylül 2019
Gönderilme Tarihi 11 Haziran 2019
Kabul Tarihi 10 Ağustos 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 6 Sayı: 3

Kaynak Göster

IEEE A. Ergün, İ. Ceylan, M. Aydın, A. E. Gürel, ve G. Koçbulut, “Solarmeter Design for High Solar Radiation Measurement and Experimental Validation”, ECJSE, c. 6, sy. 3, ss. 726–735, 2019, doi: 10.31202/ecjse.575642.