Araştırma Makalesi
BibTex RIS Kaynak Göster

Reliability Analysis of Oregon Bridges Using WIM (Weigh-in-Motion) Data

Yıl 2019, Cilt: 6 Sayı: 3, 736 - 747, 30.09.2019
https://doi.org/10.31202/ecjse.577400

Öz










In this study a reliability analysis was carried out for Oregon bridges. Different bridge types that are non-composite steel girder, reinforced concrete T-beam, and prestressed concrete girder bridges were considered. Reliability indices were calculated for various span lengths and girder spacing. Reliability indices were estimated for AASHTO HS20 design loading considering a five-year evaluation period. The actual average daily truck traffic (ADTT) values were used during the calculation. Four WIM sites from Oregon state were taken into account in the analysis. These sites correspond to three different levels of ADTT which are approximately ADTT= 5,000, ADTT = 1,500 and ADTT ≤ 500 cases. The distinction of this paper from the existing literature is the large amount of WIM data used in the analysis. The resulting reliability indices ranged from 2.4 to 6.4 for different span lengths, girder spacing, load effects (moment or shear), type of girder and ADTT level. These indices were compared with the existing ones presented in the literature. 


Destekleyen Kurum

Oregon Department of Transportation (ODOT)

Teşekkür

Acknowledgements: This work was partially supported by the Oregon Department of Transportation (ODOT). Any opinions and conclusions are those of the authors and do not necessarily reflect the views of the supporter.

Kaynakça

  • Nowak AS. NCHRP Report 368: Calibration of LRFD Bridge Design Code. Washington, DC: Transportation Research Board, National Research Council; 1999.
  • Koç, M., Esen, İ., Eroğlu, M., Çay, Y., Çerlek, Ö., “Esnek Yapıların Çoklu Taşıt Hareketi Etkisi Altında Dinamik Analizi”. El-Cezeri Journal of Science and Engineering, 2018, 5: 176-181.
  • Mao J., Yu Z., Xiao Y., Jin C., Bai Y., “Random dynamic analysis of a train-bridge coupled system involving random system parameters based on probability density evolution method.”, Probabilist Eng Mech, 2016, 46: 48-61.
  • Ma R., Xu S., Wang D., Chen A., “Vehicle models for fatigue loading on steel box-girder bridges based on weigh-in-motion data.”, Struct Infrastructure E, 2018, 14(6): 701-713.
  • Znidaric A., Kalin J., Kreslin M., Favai P., Kolakowski P., “Railway bridge weigh-in-motion system.” Transport Res Proced, 2016, 14: 4010–4019.
  • Kalyankar R., Uddin N., “Axle detection on prestressed concrete bridge using bridge weigh-in-motion system.”, J Civ Struct Health Monit 2017, 7(2): 191-205.
  • Znidaric A., Kalin J., Kreslin M., “Improved accuracy and robustness of bridge weigh-in-motion systems.”, Struct Infrastructure E 2018, 14(4): 412-424.
  • Yang Y., Cai CS., Deng L., “State-of-the-art review on bridge weigh-in-motion technology.”, Adv Struct Eng , 2016, 19(9): 1514-1530.
  • Lydon M., Taylor S.E., Robinson D., Mufti A., Brien EJO., “Recent developments in bridge weigh in motion (B-WIM).”, J Civ Struct Health Monit, 2016, 6(1): 69-81.
  • Sekiya H., Kosaku K., Chitoshi M., “Simplified Portable Bridge Weigh-in-Motion System Using Accelerometers.”, J Bridge Eng 2017, 23(1): 1-15.
  • Richardson J., Steven J., Brown A., O’Brien E., Hajializadeh D., “On the use of bridge weigh-in-motion for overweight truck enforcement.”, Int J Heavy Veh Syst, 2014, 21(2): 83-104.
  • Liu Y., Zhang H., Yang D., Jiang N., “Effect of live load on simply supported bridges under a random traffic flow based on weigh-in-motion data.”, Adv Struct Eng, 2017, 20(5): 722-736.
  • Zolghadri N., Halling M.W, Johnson N., Barr P.J., “Field verification of simplified bridge weigh-in-motion techniques.” J Bridge Eng 2016, 21(10): 1-17.
  • Soto G., Hernández-Martínez A., Valdés-Vázquez J.G., “Probabilistic assessment of a design truck model and live load factor from weigh-in-motion data for Mexican Highway bridge design.”, Can J Civil Eng 2015, 42(11): 970-974.
  • John L. “Reliability evaluation of the Eurocode model for fatigue assessment of steel bridges.”, J Constr Steel Res 2018, 141:1-8.
  • Han W., Yuan Y., Xie Q., Chen X., Huang P., “Reliability-Based Truck Weight Regulation of Small-to Medium-Span Bridges.” J Bridge Eng, 2017, 23(1): 04017109.
  • Ghasemi S.H., Nowak A.S., “Reliability analysis for serviceability limit state of bridges concerning deflection criteria.”, Struct Eng Int, 2016, 26(2):168-75.
  • Yanik, A., Higgins, C., Borello, D. “Development of live load factors for rating of Oregon bridges using WIM load effects and statistical bridge models.”, Technical Report for Oregon Department of Transportation, (2015).
  • AASHTO. “The Manual for Bridge Evaluation First Edition”, American Association of State Highway and Transportation Officials, Washington, D.C, (2008).
  • Haldar A., Mahadevan S., “Probability, Reliability, and Statistical Methods in Engineering Design.”, John Wiley, New York, 2000.
  • Mlynarski M., Wassef W.G., Nowak A.S., “A Comparison of AASHTO Bridge Load Rating Methods.”, NCHRP Report 700, Transportation Research Board, National Research Council, Washington, D.C, 2011.
  • Kim S.J., Nowak A.S., “Load Distribution and Impact Factors for I-Girder Bridges.”, J Bridge Eng, 1997, 2(3), 97-104.
  • American Association of State Highway and Transportation Officials (AASHTO), “The Manual For Bridge Evaluation First Edition.”, Washington, D.C, 2008.
  • Kim S.J., Nowak A.S. Load Distribution and Impact Factors for I-Girder Bridges. J Bridge Eng 1997; 2(3), 97-104.
  • Eom J., Nowak A.S., “Live Load Distribution for Steel Girder Bridges.”, J Bridge Eng, 2001, 6( 6), 489-497.
  • American Association of State Highway and Transportation Officials (AASHTO), “LRFD Bridge Design Specifications.”, Washington, D.C., (2012).

Oregon Köprülerinde Hareket Halinde Tartma (WIM) Verileri Kullanılan Bir Güvenilirlik Analizi

Yıl 2019, Cilt: 6 Sayı: 3, 736 - 747, 30.09.2019
https://doi.org/10.31202/ecjse.577400

Öz

Bu çalışmada Oregon köprüleri için bir güvenilirlik analizi gerçekleştirilmiştir. Çalışma kapsamında kompozit olmayan çelik kirişli, betonarme T kesit kirişli ve öngerilmeli beton kirişli köprüler göz önüne alınmıştır. Güvenilirlik indisleri, çeşitli kiriş açıklıkları ve aralıkları için hesaplanmıştır. Yüklemelerde Amerikan otoyol ve taşıma standartlarını belirleyen kurum olan AASHTO’nun HS20 yükü ve 5 yıllık değerlendirme zamanı kullanılmıştır. Çalışma kapsamında gerçek ortalama günlük trafik (ADTT) değerleri kullanılmıştır. Hesaplamalarda Oregon eyaletine ait dört tane trafik bölgesine ait hareket halinde tartma (WIM) verileri kullanılmıştır. Bu trafik bölgeleri dört adet ADTT değerine karşı gelmektedir. Bu durumlar  ADTT= 5,000, ADTT = 1,500 ve ADTT ≤ 500 değerlerine tekabül etmektedir. Bu çalışmanın mevcut  çalışmalardan farkı kullanılan WIM verilerinin oldukça fazla sayıda olmasıdır. Bir yıl boyunca toplanan WIM verileri kullanılmıştır. Analizler sonucunda güvenilirlik indislerinin farklı kiriş aralıkları ve açıkları için moment ve kesme kuvveti etkisine göre 2.4 ten 6.4 e kadar değiştiği görülmüştür. Bulunan değerler literatürde yer alan değerler ile karşılaştırılmıştır.

Kaynakça

  • Nowak AS. NCHRP Report 368: Calibration of LRFD Bridge Design Code. Washington, DC: Transportation Research Board, National Research Council; 1999.
  • Koç, M., Esen, İ., Eroğlu, M., Çay, Y., Çerlek, Ö., “Esnek Yapıların Çoklu Taşıt Hareketi Etkisi Altında Dinamik Analizi”. El-Cezeri Journal of Science and Engineering, 2018, 5: 176-181.
  • Mao J., Yu Z., Xiao Y., Jin C., Bai Y., “Random dynamic analysis of a train-bridge coupled system involving random system parameters based on probability density evolution method.”, Probabilist Eng Mech, 2016, 46: 48-61.
  • Ma R., Xu S., Wang D., Chen A., “Vehicle models for fatigue loading on steel box-girder bridges based on weigh-in-motion data.”, Struct Infrastructure E, 2018, 14(6): 701-713.
  • Znidaric A., Kalin J., Kreslin M., Favai P., Kolakowski P., “Railway bridge weigh-in-motion system.” Transport Res Proced, 2016, 14: 4010–4019.
  • Kalyankar R., Uddin N., “Axle detection on prestressed concrete bridge using bridge weigh-in-motion system.”, J Civ Struct Health Monit 2017, 7(2): 191-205.
  • Znidaric A., Kalin J., Kreslin M., “Improved accuracy and robustness of bridge weigh-in-motion systems.”, Struct Infrastructure E 2018, 14(4): 412-424.
  • Yang Y., Cai CS., Deng L., “State-of-the-art review on bridge weigh-in-motion technology.”, Adv Struct Eng , 2016, 19(9): 1514-1530.
  • Lydon M., Taylor S.E., Robinson D., Mufti A., Brien EJO., “Recent developments in bridge weigh in motion (B-WIM).”, J Civ Struct Health Monit, 2016, 6(1): 69-81.
  • Sekiya H., Kosaku K., Chitoshi M., “Simplified Portable Bridge Weigh-in-Motion System Using Accelerometers.”, J Bridge Eng 2017, 23(1): 1-15.
  • Richardson J., Steven J., Brown A., O’Brien E., Hajializadeh D., “On the use of bridge weigh-in-motion for overweight truck enforcement.”, Int J Heavy Veh Syst, 2014, 21(2): 83-104.
  • Liu Y., Zhang H., Yang D., Jiang N., “Effect of live load on simply supported bridges under a random traffic flow based on weigh-in-motion data.”, Adv Struct Eng, 2017, 20(5): 722-736.
  • Zolghadri N., Halling M.W, Johnson N., Barr P.J., “Field verification of simplified bridge weigh-in-motion techniques.” J Bridge Eng 2016, 21(10): 1-17.
  • Soto G., Hernández-Martínez A., Valdés-Vázquez J.G., “Probabilistic assessment of a design truck model and live load factor from weigh-in-motion data for Mexican Highway bridge design.”, Can J Civil Eng 2015, 42(11): 970-974.
  • John L. “Reliability evaluation of the Eurocode model for fatigue assessment of steel bridges.”, J Constr Steel Res 2018, 141:1-8.
  • Han W., Yuan Y., Xie Q., Chen X., Huang P., “Reliability-Based Truck Weight Regulation of Small-to Medium-Span Bridges.” J Bridge Eng, 2017, 23(1): 04017109.
  • Ghasemi S.H., Nowak A.S., “Reliability analysis for serviceability limit state of bridges concerning deflection criteria.”, Struct Eng Int, 2016, 26(2):168-75.
  • Yanik, A., Higgins, C., Borello, D. “Development of live load factors for rating of Oregon bridges using WIM load effects and statistical bridge models.”, Technical Report for Oregon Department of Transportation, (2015).
  • AASHTO. “The Manual for Bridge Evaluation First Edition”, American Association of State Highway and Transportation Officials, Washington, D.C, (2008).
  • Haldar A., Mahadevan S., “Probability, Reliability, and Statistical Methods in Engineering Design.”, John Wiley, New York, 2000.
  • Mlynarski M., Wassef W.G., Nowak A.S., “A Comparison of AASHTO Bridge Load Rating Methods.”, NCHRP Report 700, Transportation Research Board, National Research Council, Washington, D.C, 2011.
  • Kim S.J., Nowak A.S., “Load Distribution and Impact Factors for I-Girder Bridges.”, J Bridge Eng, 1997, 2(3), 97-104.
  • American Association of State Highway and Transportation Officials (AASHTO), “The Manual For Bridge Evaluation First Edition.”, Washington, D.C, 2008.
  • Kim S.J., Nowak A.S. Load Distribution and Impact Factors for I-Girder Bridges. J Bridge Eng 1997; 2(3), 97-104.
  • Eom J., Nowak A.S., “Live Load Distribution for Steel Girder Bridges.”, J Bridge Eng, 2001, 6( 6), 489-497.
  • American Association of State Highway and Transportation Officials (AASHTO), “LRFD Bridge Design Specifications.”, Washington, D.C., (2012).
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Arcan Yanik 0000-0002-2527-4812

Christopher Hıggıns Bu kişi benim 0000-0002-2443-0369

Yayımlanma Tarihi 30 Eylül 2019
Gönderilme Tarihi 13 Haziran 2019
Kabul Tarihi 29 Temmuz 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 6 Sayı: 3

Kaynak Göster

IEEE A. Yanik ve C. Hıggıns, “Reliability Analysis of Oregon Bridges Using WIM (Weigh-in-Motion) Data”, ECJSE, c. 6, sy. 3, ss. 736–747, 2019, doi: 10.31202/ecjse.577400.