Araştırma Makalesi
BibTex RIS Kaynak Göster

PEM Yakıt Hücreleri için Sülfone Polieter Eter Keton (sPEEK) Elektrolitlerin Sentezi ve Karakterizasyonu: Sülfonasyon Derecesi Etkisi

Yıl 2020, Cilt: 7 Sayı: 2, 424 - 435, 31.05.2020
https://doi.org/10.31202/ecjse.649784

Öz

Bu araştırma, proton değişim membran (PEM) yakıt
hücrelerinde proton taşıyıcı olarak kullanılan ticari membranlara alternatif
olabilecek sülfone polieter eter keton (sPEEK) membranların sentezi ve
karakterizasyonu ile ilgilidir. Çalışmada saf PEEK membran matrisinin farklı
sürelerde (1, 2 ve 3 saat) sülfonasyonuyla, sülfonasyon derecesi farklı
membranlar üretilmiş, hazırlanan membranların yapısal ve termomekanik
karakterizasyonu gerçekleştirilerek standart yakıt hücresi çalışma koşullarında
proton iletkenlikleri belirlenmiştir. Hazırlanan sülfone polimerik membranların
termomekanik davranışları ve proton iletkenlikleri sülfonasyon derecelerine
bağlı olarak değerlendirilmiştir. Membranların termal dayanımları
termogravimetrik analizlerle (TGA) incelenmiş, tüm ürünler standart yakıt
hücresi çalışma koşulları için yüksek termal kararlılık sergilemişlerdir.
Proton iletkenlik değerleri ve iyon değişim kapasiteleri sülfonasyon süresi ve
sülfonasyon derecesiyle artmış, en yüksek iletkenlik değerleri % 81.44
sülfonasyon derecesi ile hazırlanan sPEEK-3 membranlarında gözlenmiştir.
sPEEK-3 membranları için 300-330 K sıcaklık aralığında en yüksek proton
iletkenlik değerine (3.38x10-2 S/m) 330 K sıcaklıkta ulaşılmıştır.
sPEEK-3 membranların mekanik mukavemeti dinamik mekanik analizle (DMA)
incelenmiş, depolama modülü (E’: 0.23 GPa) ve camsı geçiş sıcaklığı (Tg:
143oC) değerlerinin ticari Nafion 212 proton taşıyıcı membranlarla
mukayese edilebilir seviyelerde olduğu gözlenmiştir. Bu çalışma sonucunda,
hazırlanan  sPEEK-3 membranlarının
termomekanik kararlılıklarının ve iletkenlik değerlerinin standart PEM yakıt
hücresi işletme koşullarında alternatif olabilecek düzeyde olduğu görülmüştür.

Teşekkür

Projenin pratik uygulama çalışmalarının gerçekleştirilebilmesi için vermiş oldukları katkılar adına Kimya ve Süreç Mühendisi Mehmet Acar ve Kimya ve Süreç Mühendisi Caner Güven’e; proton iletkenlik ölçümlerinin gerçekleştirilmesinde katkılarından dolayı Doç. Dr. Ufuk Abacı’ya teşekkür ederim.

Kaynakça

  • [1] Lucia, U., Overview on fuel cells, Renewable and Sustainable Energy Reviews, 2014, 30, 164-169.
  • [2] Sharaf, O.Z., Orhan, M.F., An overview of fuel cell technology: Fundamentals and applications, Renewable and Sustainable Energy Reviews, 2014, 32, 810-853.
  • [3] Park, S., Lee, J.W., Popov, B.N., A review of gas diffusion layer in PEM fuel cells: Materials and designs, International Journal of Hydrogen Energy, 2012, 37, 7, 5850-5865.
  • [4] Wang, K., Yang, L., Wei, W., Zhang, L., Chang, G., Phosphoric acid-doped poly(ether sulfone benzotriazole) for high-temperature proton exchange membrane fuel cell applications, Journal of Membrane Science, 2018, 549, 23-27.
  • [5] Bose, S., Kuila, T., Nguyen, T.X.H., Kim, N.H., Lau, K., Lee, J.H., Polymer membranes for high temperature proton exchange membrane fuel cell: Recent advances and challenges, Progress in Polymer Science, 2011, 36, 6, 813-843.
  • [6] Tripathi B.P., Shahi, V.K., Organic–inorganic nanocomposite polymer electrolyte membranes for fuel cell applications, Progress in Polymer Science, 2011, 36, 7, 945-979.
  • [7] Sgreccia, E., Di Vona, M.L., Knauth, P., Hybrid composite membranes based on SPEEK and functionalized PPSU for PEM fuel cells, International Journal of Hydrogen Energy, 2011, 36, 13, 8063-8069.
  • [8] Şahin, A., The development of Speek/Pva/Teos blend membrane for proton exchange membrane fuel cells, Electrochimica Acta, 2018, 271, 127-136.
  • [9] Yang, J., Li, Q., Jensen, J.O., Pan, C., Cleemann, L.N., Bjerrum, N.J., He, R., Phosphoric acid doped imidazolium polysulfone membranes for high temperature proton exchange membrane fuel cells, Journal of Power Sources, 2012, 205, 114-121.
  • [10] He, T., Frank, M., Mulder, M.H.V., Wessling, M., Preparation and characterization of nanofiltration membranes by coating polyethersulfone hollow fibers with sulfonated poly(ether ether ketone) (SPEEK), Journal of Membrane Science, 2008, 307, 1, 62-72.
  • [11] Iulianelli, A., Basile, A., Sulfonated PEEK-based polymers in PEMFC and DMFC applications: A review, International Journal of Hydrogen Energy, 2012, 37, 20, 15241-15255.
  • [12] Kim, D.J., Lee, B.N., Nam, S.Y., Characterization of highly sulfonated PEEK based membrane for the fuel cell application, International Journal of Hydrogen Energy, 2017, 42, 37, 23768-23775.
  • [13] Trindadead, L.G., Borba, K.M.N., Zanchet, L., Lima, D.W., Trench, A.B., Rey, F., Diaz, U., Longo, E., Gusmão, K.B., Martini, E.M.A., SPEEK-based proton exchange membranes modified with MOF-encapsulated ionic liquid, Materials Chemistry and Physics, 2019, 236, 121792.
  • [14] Li, Y., Zhang, M., Wang, X., Li, Z., Zhao, L., Anhydrous conducting composite membranes composed of SPEEK/silica/ionic liquids for high-temperature proton exchange, Electrochimica Acta, 2016, 222, 1308-1315.
  • [15] Hou, H., Maranesi, B., Chailan, J.F., Khadhraoui, M., Crosslinked SPEEK membranes: Mechanical, thermal, and hydrothermal properties, Journal of Material Research, 2012, 27, 15, 1950-1957.
  • [16] Mikhailenko, S.D., Wang, K., Kaliaguine, S., Xing, P., Robertson, G.P., Guiver, M.D., Proton conducting membranes based on cross-linked sulfonated poly(ether ether ketone) (SPEEK), Journal of Membrane Science, 2004, 233, 1–2, 93-99.
  • [17] Zhao, C., Lin, H., Shao, K., Li, X., Ni, H., Wang, Z., Na, H., Block sulfonated poly(ether ether ketone)s (SPEEK) ionomers with high ion-exchange capacities for proton exchange membranes, Journal of Power Sources, 2006, 162, 2, 1003-1009.
  • [18] Zaidi, S.M.J, Mikhailenko, S.D., Robertson, G.P., Guiver, M.D., Kaliaguine, S., Proton conducting composite membranes from polyether ether ketone and heteropolyacids for fuel cell applications, Journal of Membrane Science, 2000, 173, 1, 17-34.
  • [19] Zaidi, S.M.J., Preparation and characterization of composite membranes using blends of SPEEK/PBI with boron phosphate, Electrochimica Acta, 2005, 50, 24, 4771-4777.
  • [20] Zhang, X., Yu,S., Zhu, Q., Zhao, L., Enhanced anhydrous proton conductivity of SPEEK/IL composite membrane embedded with amino functionalized mesoporous silica, International Journal of Hydrogen Energy, 2019.
  • [21] Lin, J., Wu, P.H., Wycisk, R., Pintauro, P.N., PEM Fuel Cell Properties of Pre-Stretched Recast Nafion®, ECS Transactions, 2008, 16, 2, 1195-1204.

Synthesis and Characterization of Sulfonated Polyether Ether Ketone (sPEEK) Electrolytes for PEM Fuel Cells: Effect of Sulfonation Degree

Yıl 2020, Cilt: 7 Sayı: 2, 424 - 435, 31.05.2020
https://doi.org/10.31202/ecjse.649784

Öz

This research is concerned with the synthesis and characterization of sulfonated polyether ether ketone (sPEEK) membranes which may be an alternative to commercial membranes used as proton carriers in proton exchange membrane (PEM) fuel cells. In this study, membranes of different degree of sulfonation were produced by sulfonation of pure PEEK membrane matrix at different times (1, 2 and 3 hours). Structural and thermomechanical characterization of prepared membranes were performed and proton conductivity was determined under standard fuel cell conditions. Thermomechanical behavior and proton conductivity of sulfonated polymeric membranes were evaluated according to the degree of sulfonation. The thermal strengths of the membranes were examined by thermogravimetric analysis (TGA) and all products showed high thermal stability for standard fuel cell operating conditions. Proton conductivity values and ion exchange capacities increased with sulfonation time and degree of sulfonation and highest conductivity values were observed in sPEEK-3 membranes prepared with a degree of sulfonation of 81.44%. The maximum proton conductivity (3.38x10-2 S/m) for sPEEK-3 membranes in the 300-330 K temperature range was reached at 330 K temperature. The mechanical strength of sPEEK-3 membranes was investigated by dynamic mechanical analysis (DMA) and storage module (E ’: 0.23 GPa) and glass transition temperature (Tg: 143oC) values were comparable to those of commercial Nafion 212 proton carrier membranes. As a result of this study, the thermomechanical stability and conductivity values of the prepared sPEEK-3 membranes were found to be an alternative level under standard PEM fuel cell operating conditions.

Kaynakça

  • [1] Lucia, U., Overview on fuel cells, Renewable and Sustainable Energy Reviews, 2014, 30, 164-169.
  • [2] Sharaf, O.Z., Orhan, M.F., An overview of fuel cell technology: Fundamentals and applications, Renewable and Sustainable Energy Reviews, 2014, 32, 810-853.
  • [3] Park, S., Lee, J.W., Popov, B.N., A review of gas diffusion layer in PEM fuel cells: Materials and designs, International Journal of Hydrogen Energy, 2012, 37, 7, 5850-5865.
  • [4] Wang, K., Yang, L., Wei, W., Zhang, L., Chang, G., Phosphoric acid-doped poly(ether sulfone benzotriazole) for high-temperature proton exchange membrane fuel cell applications, Journal of Membrane Science, 2018, 549, 23-27.
  • [5] Bose, S., Kuila, T., Nguyen, T.X.H., Kim, N.H., Lau, K., Lee, J.H., Polymer membranes for high temperature proton exchange membrane fuel cell: Recent advances and challenges, Progress in Polymer Science, 2011, 36, 6, 813-843.
  • [6] Tripathi B.P., Shahi, V.K., Organic–inorganic nanocomposite polymer electrolyte membranes for fuel cell applications, Progress in Polymer Science, 2011, 36, 7, 945-979.
  • [7] Sgreccia, E., Di Vona, M.L., Knauth, P., Hybrid composite membranes based on SPEEK and functionalized PPSU for PEM fuel cells, International Journal of Hydrogen Energy, 2011, 36, 13, 8063-8069.
  • [8] Şahin, A., The development of Speek/Pva/Teos blend membrane for proton exchange membrane fuel cells, Electrochimica Acta, 2018, 271, 127-136.
  • [9] Yang, J., Li, Q., Jensen, J.O., Pan, C., Cleemann, L.N., Bjerrum, N.J., He, R., Phosphoric acid doped imidazolium polysulfone membranes for high temperature proton exchange membrane fuel cells, Journal of Power Sources, 2012, 205, 114-121.
  • [10] He, T., Frank, M., Mulder, M.H.V., Wessling, M., Preparation and characterization of nanofiltration membranes by coating polyethersulfone hollow fibers with sulfonated poly(ether ether ketone) (SPEEK), Journal of Membrane Science, 2008, 307, 1, 62-72.
  • [11] Iulianelli, A., Basile, A., Sulfonated PEEK-based polymers in PEMFC and DMFC applications: A review, International Journal of Hydrogen Energy, 2012, 37, 20, 15241-15255.
  • [12] Kim, D.J., Lee, B.N., Nam, S.Y., Characterization of highly sulfonated PEEK based membrane for the fuel cell application, International Journal of Hydrogen Energy, 2017, 42, 37, 23768-23775.
  • [13] Trindadead, L.G., Borba, K.M.N., Zanchet, L., Lima, D.W., Trench, A.B., Rey, F., Diaz, U., Longo, E., Gusmão, K.B., Martini, E.M.A., SPEEK-based proton exchange membranes modified with MOF-encapsulated ionic liquid, Materials Chemistry and Physics, 2019, 236, 121792.
  • [14] Li, Y., Zhang, M., Wang, X., Li, Z., Zhao, L., Anhydrous conducting composite membranes composed of SPEEK/silica/ionic liquids for high-temperature proton exchange, Electrochimica Acta, 2016, 222, 1308-1315.
  • [15] Hou, H., Maranesi, B., Chailan, J.F., Khadhraoui, M., Crosslinked SPEEK membranes: Mechanical, thermal, and hydrothermal properties, Journal of Material Research, 2012, 27, 15, 1950-1957.
  • [16] Mikhailenko, S.D., Wang, K., Kaliaguine, S., Xing, P., Robertson, G.P., Guiver, M.D., Proton conducting membranes based on cross-linked sulfonated poly(ether ether ketone) (SPEEK), Journal of Membrane Science, 2004, 233, 1–2, 93-99.
  • [17] Zhao, C., Lin, H., Shao, K., Li, X., Ni, H., Wang, Z., Na, H., Block sulfonated poly(ether ether ketone)s (SPEEK) ionomers with high ion-exchange capacities for proton exchange membranes, Journal of Power Sources, 2006, 162, 2, 1003-1009.
  • [18] Zaidi, S.M.J, Mikhailenko, S.D., Robertson, G.P., Guiver, M.D., Kaliaguine, S., Proton conducting composite membranes from polyether ether ketone and heteropolyacids for fuel cell applications, Journal of Membrane Science, 2000, 173, 1, 17-34.
  • [19] Zaidi, S.M.J., Preparation and characterization of composite membranes using blends of SPEEK/PBI with boron phosphate, Electrochimica Acta, 2005, 50, 24, 4771-4777.
  • [20] Zhang, X., Yu,S., Zhu, Q., Zhao, L., Enhanced anhydrous proton conductivity of SPEEK/IL composite membrane embedded with amino functionalized mesoporous silica, International Journal of Hydrogen Energy, 2019.
  • [21] Lin, J., Wu, P.H., Wycisk, R., Pintauro, P.N., PEM Fuel Cell Properties of Pre-Stretched Recast Nafion®, ECS Transactions, 2008, 16, 2, 1195-1204.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Mesut Yılmazoğlu Bu kişi benim 0000-0001-9556-341X

Yayımlanma Tarihi 31 Mayıs 2020
Gönderilme Tarihi 22 Kasım 2019
Kabul Tarihi 14 Şubat 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 7 Sayı: 2

Kaynak Göster

IEEE M. Yılmazoğlu, “PEM Yakıt Hücreleri için Sülfone Polieter Eter Keton (sPEEK) Elektrolitlerin Sentezi ve Karakterizasyonu: Sülfonasyon Derecesi Etkisi”, ECJSE, c. 7, sy. 2, ss. 424–435, 2020, doi: 10.31202/ecjse.649784.