Katı Oksit Yakıt Hücreleri için Ce0.8Sm0.2O1.9 Esaslı Elektrolit Malzemelerinin Hazırlanmasında Değişik Aminoasit Yakma Ajanlarının Karşılaştırılması
Yıl 2020,
Cilt: 7 Sayı: 3, 1293 - 1308, 30.09.2020
Vedat Sarıboğa
Öz
Bu çalışmada katı oksit yakıt hücrelerinde elektrolit malzemesi olarak kullanılan Ce0.8Sm0.2O1.9 seramik yapılarının sentezlenmesinde değişik yakma ajanlarının etkisi incelenmiştir. Yakma ajanı olarak en ekonomik ve basit yapıdaki amino asitler olan glisin, alanin ve valin kullanılmıştır. Üç farklı yakıt durumu için adyabatik alev sıcaklıkları hesaplanmış, elde edilen tozların mikro yapıları TGA, XRD ve SEM ile karakterize edilmiştir. 800 ºC’de kalsine edilen ve 1400 ºC ’de sinterlenen pelletlenmiş örneklerin O2- iyon iletkenlikleri Elektrokimyasal İmpedans Spektroskopisi ile 800 ºC için ölçülmüş ve en üstün iletkenlik değeri yakma ajanı olarak Alanin kullanılması durumunda elde edilmiştir. Alanin yakıt durumu için iletkenlik üzerine mikro yapının etkisi detaylı olarak tartışılmış ve 360 ºC’de kalsine edilmiş 1400 ºC’de sinterlenmiş örnek ile 4.54x10-2 S.cm-1 iletkenlik değeri elde edilmiştir.
Destekleyen Kurum
TÜBİTAK ve İstanbul Üniversitesi-Cerrahpaşa Bilimsel Araştırma Projeleri Birimi
Proje Numarası
216M509 ( TÜBİTAK) ve 24090 (İÜC-BAP)
Teşekkür
Bu çalışma TÜBİTAK 216M509 numaralı ve İstanbul Üniversitesi-Cerrahpaşa Bilimsel Araştırma Projeleri Birimi 24090 Numaralı projeleri ile tarafından desteklenmiştir.
Kaynakça
- [1] http://www.mfa.gov.tr/turkeys-energy-strategy.en.mfa
- [2] Stambouli, A. B., Traversa, E.. “Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy”, Renewable and Sustainable Energy Reviews, 2002, 6(5), 433-455.
- [3] Steele, B. C., Heinzel, A., “Materials for fuel-cell technologies”, Nature,2001, 414(6861), 345-352.
- [4] Singhal, S. C., “Advances in solid oxide fuel cell technology”, Solid State Ionics, 2000, 135(1), 305-313.
- [5] Steele, B. C. H., “Material science and engineering: the enabling technology for the commercialization of fuel cell systems”, Journal of Materials Science, 2001, 36(5), 1053-1068.
[6]Kharton, V. V., Marques, F. M. B., Atkinson, A., “Transport properties of solid oxide electrolyte ceramics: a brief review”, Solid State Ionics, 2004, 174(1), 135-149.
- [7] Ormerod, R. M., “Solid oxide fuel cells”, Chemical Society Reviews, 2003, 32(1), 17-28.
- [8]Fergus, J. W.. “Electrolytes for solid oxide fuel cells”, Journal of power sources, 2006, 162(1), 30-40.
- [9] Georges, S., Goutenoire, F., Bohnke, O., Steil, M. C., Skinner, S. J., Wiemhofer, H. D., Lacorre, P., “The LAMOX family of fast oxide-ion conductors: overview and recent results”, Journal of New Materials for Electrochemical Systems, 2004, 7(1), 51-58.
- [10] Letilly, M., Joubert, O., La Salle, A. L. G., ”Characteristics and performance improvement of anode supported solid oxide fuel cells based on BaIn0.3Ti0.7O2.85(BIT07) as electrolyte, BIT07-Ni as anode and La0.58Sr0.4Co0.2Fe0.8O3−δ(LSCF) as cathode”, Journal of Power Sources, 2012, 206, 210-214.
- [11]Tuller, H. L., Nowick, A. S., “Doped ceria as a solid oxide electrolyte”, Journal of the Electrochemical Society, 1975, 122(2), 255-259.
- [12] Jadhav, L. D., Chourashiya, M. G., Subhedar, K. M., Tyagi, A. K., Patil, J. Y., “Synthesis of nanocrystalline Gd doped ceria by combustion technique”, Journal of Alloys and Compounds ,2009, 470(1), 383-386.
- [13] Horita, T., Kawada, T., Sakai, N., Yokokawa, H., Dokiya, M., “Low temperature fabrication of (Y, Gd, Sm)-doped ceria electrolytes”, Solid State Ionics, 1996, 86, 1255-1258.
- [14] Liu, Y., Li, B., Wei, X., Pan, W., “Citric–Nitrate Combustion Synthesis and Electrical Conductivity of the Sm3+ and Nd3+ Co‐Doped Ceria Electrolyte”, Journal of the American Ceramic Society, 2008, 91(12), 3926-3930.
- [15] Zha, S., Xia, C., Meng, G., “Effect of Gd (Sm) doping on properties of ceria electrolyte for solid oxide fuel cells”, Journal of Power Sources, 2003, 115(1), 44-48.
- [16] Yahiro, H., Eguchi, Y., Eguchi, K., Arai, H., “Oxygen ion conductivity of the ceria-samarium oxide system with fluorite structure”, Journal of Applied Electrochemistry, 1988 18(4), 527-531.
- [17] Fu, Y. P. Wen, S. B. Lu, C. H. , “Preparation and Characterization of Samaria‐Doped Ceria Electrolyte Materials for Solid Oxide Fuel Cells”, Journal of the American Ceramic Society, 2008, 91(1), 127-131.
- [18] Peng, C. Zhang, Y. Cheng, Z. W. Cheng, X., Meng, J., “Nitrate–citrate combustion synthesis and properties of Ce1−xSmxO2− x/2 solid solutions”, Journal of Materials Science: Materials in Electronics,2002, 13(12), 757-762.
- [19] Chen, W., Li, F., Yu, J., “Combustion synthesis and characterization of nanocrystalline CeO2-based powders via ethylene glycol–nitrate process”, Materials Letters, 2006, 60(1), 57-62.
- [20]Purohit, R. D., Saha, S., Tyagi, A. K., “Powder characteristics and sinterability of ceria powders prepared through different routes”, Ceramics International, 2006, 32(2), 143-146.
- [21] Li, S., Ge, L., Gu, H., Zheng, Y., Chen, H., Guo, L., “Sinterability and electrical properties of ZnO-doped Ce0.8Y0.2O1.9 electrolytes prepared by an EDTA–citrate complexing method”, Journal of Alloys and Compounds,2011, 509(1), 94-98.
- [22] Choi, K. H., Choi, Y. G., Park, M. W., Kodash, V. Y., Groza, J. R., Lee, J. S., “Effects of alumina additions on sintering behavior of Ce0.8Sm0.2O1.9 ceramics synthesized by Pechini method”, Journal of Alloys and Compounds, 2008, 463(1), 484-487.
- [23] Deganello, F., Marcì, G., Deganello, G., “Citrate–nitrate auto-combustion synthesis of perovskite-type nanopowders: a systematic approach”, Journal of the European Ceramic Society,2009, 29(3), 439-450.
- [24] Wu, W. C., Huang, J. T., Chiba, A., “Synthesis and properties of samaria-doped ceria electrolyte for IT-SOFCs by EDTA-citrate complexing method”, Journal of Power Sources, 2010, 195(18), 5868-5874.
- [25] Delimaris, D., Ioannides, T., “VOC oxidation over CuO–CeO2 catalysts prepared by a combustion method”, Applied Catalysis B: Environmental, 2009, 89(1), 295-302.
- [26] Peng, R., Xia, C., Fu, Q., Meng, G., Peng, D., “Sintering and electrical properties of (CeO2)0.8(Sm2O3)0.1 powders prepared by glycine–nitrate process”, Materials Letters, 2002, 56(6), 1043-1047.
- [27] Purohit, R. D., Sharma, B. P., Pillai, K. T., Tyagi, A. K., “Ultrafine ceria powders via glycine-nitrate combustion”, Materials Research Bulletin, 2001, 36(15), 2711-2721.
- [28] Tian, R., Zhao, F., Chen, F., Xia, C., “Sintering of Samarium-doped ceria powders prepared by a glycine-nitrate process”, Solid State Ionics, 2011, 192(1), 580-583.
- [29] Patil, B. B., Basu, S. “Effect of glycine-nitrate ratio on SDC nano-powder synthesized by glycine-nitrate combustion synthesis”, Journal of Information, Knowledge and Research in Mechanical Engineering,2014, 619-624.
- [30] Sagadeev, E. V., Gimadeev, A. A., & Barabanov, V. P., “The enthalpies of formation and sublimation of amino acids and peptides”, Russian Journal of Physical Chemistry A, 2010 84(2), 209-214.
- [31] Gu, L., Meng, G., “Powder synthesis and characterization of nanocrystalline CeO2 via the combustion processes”, Materials Research Bulletin, 2007, 42(7), 1323-1331.
- [32] X.C. Fu, W.X. Shen, T.Y. Yao “Physical Chemistry, fourth ed.”, High Education Press, Beijing, p. 481.(1997)
- [33] J.A. Dean (Ed.), Lange’s Handbook of Chemistry, 15th ed., Science Press and McGraw-Hill Education (Asia) Co., Beijing, (2003).
- [34] Öksüzömer, M. F., Dönmez, G., Sariboğa, V.,Altinçekiç, T. G., ”Microstructure and ionic conductivity properties of gadolinia doped ceria (GdxCe1−xO2−x/2) electrolytes for intermediate temperature SOFCs prepared by the polyol method”, Ceramics International, 2013, 39(7), 7305-7315.
- [35] Macdonald, J. R., “Impedance spectroscopy: Models, data fitting, and analysis”, Solid State Ionics, 2005, 176(25-28), 1961-1969.
- [36] Bauerle, J. E., “Study of solid electrolyte polarization by a complex admittance method“, Journal of Physics and Chemistry of Solids, 1969, 30(12), 2657-2670.
- [37] Zhang, T. S., Ma, J., Chen, Y. Z., Luo, L. H., Kong, L. B., Chan, S. H., “Different conduction behaviors of grain boundaries in SiO2-containing 8YSZ and CGO20 electrolytes”, Solid State Ionics, 2006, 177(13-14), 1227-1235.