Araştırma Makalesi
BibTex RIS Kaynak Göster

Toz Metalurjisi Yöntemiyle Üretilen Al-MgO Kompozitlerin Özelliklerine Sinterleme Sıcaklığının Etkisi

Yıl 2020, Cilt: 7 Sayı: 3, 1131 - 1139, 30.09.2020
https://doi.org/10.31202/ecjse.742887

Öz

Bu çalışmada, magnezyum oksit (MgO)ilave edilmiş alüminyum (Al) - MgO kompozitler toz metalurjisi yöntemiyle üretilmiştir. Kompozitlerde MgO güçlendirici olarak ağırlıkça %10 oranında ilave edilmiş olup güçlendiricinin ortalama çapı <40 nm boyutundadır. Kompozitler, karıştırma, sıkıştırma ve 5 saat sinterleme süresi ile farklı sinterleme sıcaklıklarına (500 oC – 550 oC – 600 oC) tabi tutulmuşlardır. Kompozitlerin mikroyapıları optik mikroskop ve taramalı elektron mikroskobu (SEM) aracılığıyla incelenmiştir. Kompozitlerin teorik yoğunlukları karışım kanununa göre ve ölçülen yoğunlukları Arşimed prensibine göre araştırılmıştır. Teorik yoğunluk değerleri ve ölçülen yoğunluk değerleri kullanılarak ürünlerin porozite içeriği belirlenmiştir. Ayrıca kompozitlere sertlik testi uygulanarak mekanik özellikleri araştırılmıştır. MgO nano partikül alüminyum matrsinin sertliğini önemli derecede arttırmıştır. Maksimum sertlik değeri Al-10 MgO kompozitte 104 HB olarak elde edilmiştir. Tane büyümesi sertlikte liner büyümeyi engellediği görülmüştür. Artan sıcaklıkla kompozitlerde tane büyümesi meydana gelmekte, porozite içeriği azalmakta ve sertlikte farklı değerler elde edilmektedir. Maksimum relatif yoğunluk 600 oC sintermele sıcaklığı ile elde edilmiştir.

Teşekkür

10-12 Ekim 2019 tarihlerinde Gaziantep Üniversitesi'nde düzenlenen konferansta sunulan çalışmamın seçimi için TICMET19 organizasyon komitesine en derin takdirimi sunmak istiyorum.

Kaynakça

  • 1. Callister Jr, W.D. and D.G. Rethwisch, Fundamentals of materials science and engineering: an integrated approach. 2012: John Wiley & Sons.
  • 2. Callister, W. and D. Rethwisch, The structure of crystalline solids. Materials science and engineering: an intr oduction. New York: John Wiley & Sons, Inc, 2007: p. 38-79.
  • 3. Groover, M.P., Fundamentals of modern manufacturing: materials processes, and systems. 2007: John Wiley & Sons.
  • 4. ALTUNPAK, Y. and H. AKBULUT, -Al2O3 Kısa Fiber Takviyeli LM 13 Alüminyum Alaşımının Eğilme Dayanımına Yaşlandırma Isıl İşeminin Etkisi. El-Cezeri Journal of Science and Engineering. 6(1): p. 175-180.
  • 5. Chawla, N. and Y.L. Shen, Mechanical behavior of particle reinforced metal matrix composites. Advanced engineering materials, 2001. 3(6): p. 357-370.
  • 6. EKREM, M., Hekzagonal Bor Nitrür Nanoplate-Nano Ag/Epoksi Kompozitler: Üretimi, Mekanik ve Termal Özellikleri. El-Cezeri Journal of Science and Engineering. 6(3): p. 585-593.
  • 7. Eltaher, M., et al., Effect of Al2O3 particles on mechanical and tribological properties of Al–Mg dual-matrix nanocomposites. Ceramics International, 2020. 46(5): p. 5779-5787.
  • 8. Harish, P., et al., Characterization of Mechanical and Tribological Properties of Aluminium alloy based Hybrid Composites Reinforced with Cotton Shell Ash and Silicon Carbide. 2019.
  • 9. Kumar, V.M. and C. Venkatesh, A comprehensive review on material selection, processing, characterization and applications of aluminium metal matrix composites. Materials Research Express, 2019. 6(7): p. 072001.
  • 10. Namdeo, D.S., G. Subhash, and V. Jagadale, An Experimental Study of Effect of Silicon Carbide on Mechanical Properties of Aluminium Based Composite, in Techno-Societal 2018. 2020, Springer. p. 823-830.
  • 11. Ozden, S., R. Ekici, and F. Nair, Investigation of impact behaviour of aluminium based SiC particle reinforced metal–matrix composites. Composites Part A: Applied Science and Manufacturing, 2007. 38(2): p. 484-494.
  • 12. Rajaravi, C. and P. Lakshminarayanan, Experimental and Finite Element Analysis of Fracture Toughness on Al/SiCp MMCs in Different Conditions. International Journal of Engineering and Management Research (IJEMR), 2015. 5(6): p. 320-324.
  • 13. Reddy, A.P., P.V. Krishna, and R. Rao, Mechanical and Wear properties of aluminum-based nanocomposites fabricated through ultrasonic assisted stir casting. Journal of Testing and Evaluation, 2020. 48(4).
  • 14. Song, Y., et al., Effect of carbon-fibre powder on friction and wear properties of copper-matrix composites. Materials Science and Technology, 2020. 36(1): p. 92-99.
  • 15. Rosso, M., Ceramic and metal matrix composites: Routes and properties. Journal of materials processing technology, 2006. 175(1-3): p. 364-375.
  • 16. Manu, K.S., et al., Liquid metal infiltration processing of metallic composites: a critical review. Metallurgical and Materials Transactions B, 2016. 47(5): p. 2799-2819.
  • 17. Talaş, Ş. and G. Oruç, Characterization of TiC and TiB2 reinforced Nickel Aluminide (NiAl) based metal matrix composites cast by in situ vacuum suction arc melting. Vacuum, 2020. 172: p. 109066.
  • 18. Cuevas, A.C., et al., Metal matrix composites: wetting and infiltration. 2018: Springer.
  • 19. Hashim, J., L. Looney, and M. Hashmi, Metal matrix composites: production by the stir casting method. Journal of materials processing technology, 1999. 92: p. 1-7.
  • 20. Evangelista, E. and S. Spigarelli, Constitutive equations for creep and plasticity of aluminum alloys produced by powder metallurgy and aluminum-based metal matrix composites. Metallurgical and materials transactions A, 2002. 33(2): p. 373-381.
  • 21. Rajan, T., R. Pillai, and B. Pai, Reinforcement coatings and interfaces in aluminium metal matrix composites. Journal of materials science, 1998. 33(14): p. 3491-3503.
  • 22. Abdizadeh, H. and M.A. Baghchesara, Investigation on mechanical properties and fracture behavior of A356 aluminum alloy based ZrO2 particle reinforced metal-matrix composites. Ceramics International, 2013. 39(2): p. 2045-2050.
  • 23. Dash, K., B.C. Ray, and D. Chaira, Synthesis and characterization of copper–alumina metal matrix composite by conventional and spark plasma sintering. Journal of Alloys and compounds, 2012. 516: p. 78-84.
  • 24. Mohan, B., A. Rajadurai, and K. Satyanarayana, Electric discharge machining of Al–SiC metal matrix composites using rotary tube electrode. Journal of materials processing technology, 2004. 153: p. 978-985.
  • 25. Shirvanimoghaddam, K., et al., Carbon fiber reinforced metal matrix composites: Fabrication processes and properties. Composites Part A: Applied Science and Manufacturing, 2017. 92: p. 70-96.
  • 26. Yang, Y., J. Lan, and X. Li, Study on bulk aluminum matrix nano-composite fabricated by ultrasonic dispersion of nano-sized SiC particles in molten aluminum alloy. Materials Science and Engineering: A, 2004. 380(1-2): p. 378-383.
  • 27. Zhao, Y.-T., et al., In situ (Al2O3+ Al3Zr) np/Al nanocomposites synthesized by magneto-chemical melt reaction. Composites Science and Technology, 2008. 68(6): p. 1463-1470.
  • 28. Zhao, H., et al., High strength and good ductility of casting Al–Cu alloy modified by PrxOy and LaxOy. Journal of Alloys and Compounds, 2011. 509(5): p. L43-L46.
  • 29. Ravindran, P., et al., Investigation of microstructure and mechanical properties of aluminum hybrid nano-composites with the additions of solid lubricant. Materials & Design, 2013. 51: p. 448-456.
  • 30. ME, N.K., H. Bhaskar, and T. Kiran, Characterization of Za-27 Alloy Reinforced with MgO Particles by Stir Casting Technique.
  • 31. Pilarska, A.A., Ł. Klapiszewski, and T. Jesionowski, Recent development in the synthesis, modification and application of Mg (OH) 2 and MgO: A review. Powder Technology, 2017. 319: p. 373-407.
  • 32. Franco-Madrid, J., et al., Microstructural and Mechanical Behavior in the Al 2024 Alloy Modified With Addition of CeO 2. Microscopy and Microanalysis, 2017. 23(S1): p. 1650-1651.
  • 33. Abdizadeh, H., R. Ebrahimifard, and M.A. Baghchesara, Investigation of microstructure and mechanical properties of nano MgO reinforced Al composites manufactured by stir casting and powder metallurgy methods: A comparative study. Composites Part B: Engineering, 2014. 56: p. 217-221.
  • 34. Baghchesara, M.A., H. Abdizadeh, and H.R. Baharvandi. Effects of MgO nano particles on microstructural and mechanical properties of aluminum matrix composite prepared via powder metallurgy route. in International Journal of Modern Physics: Conference Series. 2012. World Scientific.
  • 35. Kemaloglu, S., G. Ozkoc, and A. Aytac, Properties of thermally conductive micro and nano size boron nitride reinforced silicon rubber composites. Thermochimica Acta, 2010. 499(1–2): p. 40-47.
  • 36. Martone, A., et al., Reinforcement efficiency of multi-walled carbon nanotube/epoxy nano composites. Composites science and technology, 2010. 70(7): p. 1154-1160.
  • 37. Yang, G.H., Nanotechnology and Advanced Materials. 2012: Trans Tech Publications Limited.
  • 38. Yuan, Y. and T.R. Lee, Contact Angle and Wetting Properties, in Surface Science Techniques, G. Bracco and B. Holst, Editors. 2013, Springer Berlin Heidelberg. p. 3-34.
  • 39. Vettivel, S., N. Selvakumar, and P.V. Ponraj, Mechanical behaviour of sintered Cu-5% W nano powder composite. Procedia engineering, 2012. 38: p. 2874-2880.
  • 40. Abdallah, A., et al. EFFECT OF ALLOY COMPOSITION ON THE MECHANICAL PROPERTIES AND FRACTURE BEHAVIOR OF TUNGSTEN HEAVY ALLOYS. in The International Conference on Applied Mechanics and Mechanical Engineering. 2014. Military Technical College.

Effect of Sintering Temperature on the Properties of Al-MgO Composites Fabricated by Powder Metallurgy Method

Yıl 2020, Cilt: 7 Sayı: 3, 1131 - 1139, 30.09.2020
https://doi.org/10.31202/ecjse.742887

Öz

Kaynakça

  • 1. Callister Jr, W.D. and D.G. Rethwisch, Fundamentals of materials science and engineering: an integrated approach. 2012: John Wiley & Sons.
  • 2. Callister, W. and D. Rethwisch, The structure of crystalline solids. Materials science and engineering: an intr oduction. New York: John Wiley & Sons, Inc, 2007: p. 38-79.
  • 3. Groover, M.P., Fundamentals of modern manufacturing: materials processes, and systems. 2007: John Wiley & Sons.
  • 4. ALTUNPAK, Y. and H. AKBULUT, -Al2O3 Kısa Fiber Takviyeli LM 13 Alüminyum Alaşımının Eğilme Dayanımına Yaşlandırma Isıl İşeminin Etkisi. El-Cezeri Journal of Science and Engineering. 6(1): p. 175-180.
  • 5. Chawla, N. and Y.L. Shen, Mechanical behavior of particle reinforced metal matrix composites. Advanced engineering materials, 2001. 3(6): p. 357-370.
  • 6. EKREM, M., Hekzagonal Bor Nitrür Nanoplate-Nano Ag/Epoksi Kompozitler: Üretimi, Mekanik ve Termal Özellikleri. El-Cezeri Journal of Science and Engineering. 6(3): p. 585-593.
  • 7. Eltaher, M., et al., Effect of Al2O3 particles on mechanical and tribological properties of Al–Mg dual-matrix nanocomposites. Ceramics International, 2020. 46(5): p. 5779-5787.
  • 8. Harish, P., et al., Characterization of Mechanical and Tribological Properties of Aluminium alloy based Hybrid Composites Reinforced with Cotton Shell Ash and Silicon Carbide. 2019.
  • 9. Kumar, V.M. and C. Venkatesh, A comprehensive review on material selection, processing, characterization and applications of aluminium metal matrix composites. Materials Research Express, 2019. 6(7): p. 072001.
  • 10. Namdeo, D.S., G. Subhash, and V. Jagadale, An Experimental Study of Effect of Silicon Carbide on Mechanical Properties of Aluminium Based Composite, in Techno-Societal 2018. 2020, Springer. p. 823-830.
  • 11. Ozden, S., R. Ekici, and F. Nair, Investigation of impact behaviour of aluminium based SiC particle reinforced metal–matrix composites. Composites Part A: Applied Science and Manufacturing, 2007. 38(2): p. 484-494.
  • 12. Rajaravi, C. and P. Lakshminarayanan, Experimental and Finite Element Analysis of Fracture Toughness on Al/SiCp MMCs in Different Conditions. International Journal of Engineering and Management Research (IJEMR), 2015. 5(6): p. 320-324.
  • 13. Reddy, A.P., P.V. Krishna, and R. Rao, Mechanical and Wear properties of aluminum-based nanocomposites fabricated through ultrasonic assisted stir casting. Journal of Testing and Evaluation, 2020. 48(4).
  • 14. Song, Y., et al., Effect of carbon-fibre powder on friction and wear properties of copper-matrix composites. Materials Science and Technology, 2020. 36(1): p. 92-99.
  • 15. Rosso, M., Ceramic and metal matrix composites: Routes and properties. Journal of materials processing technology, 2006. 175(1-3): p. 364-375.
  • 16. Manu, K.S., et al., Liquid metal infiltration processing of metallic composites: a critical review. Metallurgical and Materials Transactions B, 2016. 47(5): p. 2799-2819.
  • 17. Talaş, Ş. and G. Oruç, Characterization of TiC and TiB2 reinforced Nickel Aluminide (NiAl) based metal matrix composites cast by in situ vacuum suction arc melting. Vacuum, 2020. 172: p. 109066.
  • 18. Cuevas, A.C., et al., Metal matrix composites: wetting and infiltration. 2018: Springer.
  • 19. Hashim, J., L. Looney, and M. Hashmi, Metal matrix composites: production by the stir casting method. Journal of materials processing technology, 1999. 92: p. 1-7.
  • 20. Evangelista, E. and S. Spigarelli, Constitutive equations for creep and plasticity of aluminum alloys produced by powder metallurgy and aluminum-based metal matrix composites. Metallurgical and materials transactions A, 2002. 33(2): p. 373-381.
  • 21. Rajan, T., R. Pillai, and B. Pai, Reinforcement coatings and interfaces in aluminium metal matrix composites. Journal of materials science, 1998. 33(14): p. 3491-3503.
  • 22. Abdizadeh, H. and M.A. Baghchesara, Investigation on mechanical properties and fracture behavior of A356 aluminum alloy based ZrO2 particle reinforced metal-matrix composites. Ceramics International, 2013. 39(2): p. 2045-2050.
  • 23. Dash, K., B.C. Ray, and D. Chaira, Synthesis and characterization of copper–alumina metal matrix composite by conventional and spark plasma sintering. Journal of Alloys and compounds, 2012. 516: p. 78-84.
  • 24. Mohan, B., A. Rajadurai, and K. Satyanarayana, Electric discharge machining of Al–SiC metal matrix composites using rotary tube electrode. Journal of materials processing technology, 2004. 153: p. 978-985.
  • 25. Shirvanimoghaddam, K., et al., Carbon fiber reinforced metal matrix composites: Fabrication processes and properties. Composites Part A: Applied Science and Manufacturing, 2017. 92: p. 70-96.
  • 26. Yang, Y., J. Lan, and X. Li, Study on bulk aluminum matrix nano-composite fabricated by ultrasonic dispersion of nano-sized SiC particles in molten aluminum alloy. Materials Science and Engineering: A, 2004. 380(1-2): p. 378-383.
  • 27. Zhao, Y.-T., et al., In situ (Al2O3+ Al3Zr) np/Al nanocomposites synthesized by magneto-chemical melt reaction. Composites Science and Technology, 2008. 68(6): p. 1463-1470.
  • 28. Zhao, H., et al., High strength and good ductility of casting Al–Cu alloy modified by PrxOy and LaxOy. Journal of Alloys and Compounds, 2011. 509(5): p. L43-L46.
  • 29. Ravindran, P., et al., Investigation of microstructure and mechanical properties of aluminum hybrid nano-composites with the additions of solid lubricant. Materials & Design, 2013. 51: p. 448-456.
  • 30. ME, N.K., H. Bhaskar, and T. Kiran, Characterization of Za-27 Alloy Reinforced with MgO Particles by Stir Casting Technique.
  • 31. Pilarska, A.A., Ł. Klapiszewski, and T. Jesionowski, Recent development in the synthesis, modification and application of Mg (OH) 2 and MgO: A review. Powder Technology, 2017. 319: p. 373-407.
  • 32. Franco-Madrid, J., et al., Microstructural and Mechanical Behavior in the Al 2024 Alloy Modified With Addition of CeO 2. Microscopy and Microanalysis, 2017. 23(S1): p. 1650-1651.
  • 33. Abdizadeh, H., R. Ebrahimifard, and M.A. Baghchesara, Investigation of microstructure and mechanical properties of nano MgO reinforced Al composites manufactured by stir casting and powder metallurgy methods: A comparative study. Composites Part B: Engineering, 2014. 56: p. 217-221.
  • 34. Baghchesara, M.A., H. Abdizadeh, and H.R. Baharvandi. Effects of MgO nano particles on microstructural and mechanical properties of aluminum matrix composite prepared via powder metallurgy route. in International Journal of Modern Physics: Conference Series. 2012. World Scientific.
  • 35. Kemaloglu, S., G. Ozkoc, and A. Aytac, Properties of thermally conductive micro and nano size boron nitride reinforced silicon rubber composites. Thermochimica Acta, 2010. 499(1–2): p. 40-47.
  • 36. Martone, A., et al., Reinforcement efficiency of multi-walled carbon nanotube/epoxy nano composites. Composites science and technology, 2010. 70(7): p. 1154-1160.
  • 37. Yang, G.H., Nanotechnology and Advanced Materials. 2012: Trans Tech Publications Limited.
  • 38. Yuan, Y. and T.R. Lee, Contact Angle and Wetting Properties, in Surface Science Techniques, G. Bracco and B. Holst, Editors. 2013, Springer Berlin Heidelberg. p. 3-34.
  • 39. Vettivel, S., N. Selvakumar, and P.V. Ponraj, Mechanical behaviour of sintered Cu-5% W nano powder composite. Procedia engineering, 2012. 38: p. 2874-2880.
  • 40. Abdallah, A., et al. EFFECT OF ALLOY COMPOSITION ON THE MECHANICAL PROPERTIES AND FRACTURE BEHAVIOR OF TUNGSTEN HEAVY ALLOYS. in The International Conference on Applied Mechanics and Mechanical Engineering. 2014. Military Technical College.
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Mikail Aslan 0000-0003-0578-5049

Engin Ergül 0000-0003-3347-5400

Abdulaziz Kaya 0000-0001-8767-1998

Halil İbrahim Kurt 0000-0002-5992-8853

Necip Fazıl Yılmaz 0000-0002-0166-9799

Yayımlanma Tarihi 30 Eylül 2020
Gönderilme Tarihi 26 Mayıs 2020
Kabul Tarihi 1 Temmuz 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 7 Sayı: 3

Kaynak Göster

IEEE M. Aslan, E. Ergül, A. Kaya, H. İ. Kurt, ve N. F. Yılmaz, “Toz Metalurjisi Yöntemiyle Üretilen Al-MgO Kompozitlerin Özelliklerine Sinterleme Sıcaklığının Etkisi”, ECJSE, c. 7, sy. 3, ss. 1131–1139, 2020, doi: 10.31202/ecjse.742887.