Araştırma Makalesi
BibTex RIS Kaynak Göster

Üst Uzuv Robot Kol Sistemi Tasarımı ve Kinematik Analizi

Yıl 2020, Cilt: 7 Sayı: 3, 1320 - 1331, 30.09.2020
https://doi.org/10.31202/ecjse.753267

Öz

Bu çalışmada, kol kasında rahatsızlık hisseden ve güç kaybı yaşayan kişiler için giyilebilir bir üst ekstremite robot kol tasarımı tasarlanmıştır. Kol rahatsızlığı olan kullanıcı, tasarlanan sistemi koluna bağlayabilir ve sağlıklı bireyler gibi günlük yaşam aktiviteleri gerçekleştirebilir. Üst ekstremite robot kol sistemi Solidworks programında tasarlanmıştır. Sistem kullanıcının beline bağlanır ve tüm kolu sarar. Tasarlanan robot kol sistemi 5 cm kalınlığında alüminyum malzemeden üretilecek şekilde tasarlanmıştır. Köşeli servo motorlar eklemlerden bileklere ve dirseklere monte edilir. Doğrusal motor, hem dikey hem de yatay hareket sağlamak için üst ekstremite sisteminin omuz kısmına monte edilmiştir. Solidworks yazılımı yardımıyla tasarlanan mekanizma için gerekli analizler yapıldı. Kol, el ve omuz aparatlarının güvenlik katsayıları maksimum 250 Newton yük için hesaplanmıştır. Daha sonra gerekli hareketler için kısıtlamalar yapılmış ve kullanılacak motorların güç ve tork değerleri hesaplanmıştır. Ayrıca, sistemin kol, el ve omuz kısımları için kuvvet dağılımları yapılarak maksimum yer değiştirmeler belirlenmiştir.

Kaynakça

  • Adar N G, Ören H & Kozan R, Sakarya University Journal of Science (SAUJS), 17-1 (2013) 155-160.
  • Riai A, Madani T, Benallegue A & Djouani K, Control Engineering Practice, 75 (2018) 108-117.
  • Şenel F A & Cetişli B, Pamukkale University Journal of Engineering Sciences, 21-5 (2015).
  • Başer Ö, Şekerci B, Kızılhan H & Kılıç E, Journal of Engineering Sciences and Design, 6-3 (2018) 365-374.
  • Brahmi B, Laraki M H, Saad M, Rahman M H, Ochoa-Luna C & Brahmi A, Robotics and Autonomous Systems, 117 (2019) 92-102.
  • Theurel J, Desbrosses K, Roux T & Savescu A, Applied Ergonomics, 67 (2018) 211-217.
  • Spada S, Ghibaudo L, Gilotta S, Gastaldi L & Cavatorta M P, Procedia Manufacturing, 11 (2017) 1255-1262.
  • Kocaoğlu S & Akdoğan E, Exoskeleton Robots for Rehabilitation of the Upper Limb, paper presented at International Federation of Automatic Control – TOK, Denizli, Turkey, 2015.
  • Anam K & Al-Jumaily A A, Procedia Engineering, 41 (2012) 988-994.
  • Yu H, Choi I S, Han K L, Choi J Y, Chung G & Suh J, Control Engineering Practice, 72 (2018) 104-113.
  • Eren İ, Robot arm control system design and application with more than required degree of freedom, Master's Thesis, Pamukkale University The Graduate School of Natural and Applied Sciences, Turkey 2006.
  • Iqbal J, Tsagarakis N G & Caldwell D G, Design of a wearable direct-driven optimized hand exoskeleton device, paper presented at 4th International Conference on Advances in Computer-Human Interactions (ACHI 2011), Gosier, Guadeloupe, France, 2011.
  • Stansfield B, Rooney S, Brown L, Kay M, Spoettl L & Shanmugam S, Gait & Posture, 61 (2018) 135-140.
  • Bozdemir M & Adıgüzel E, Pamukkale University Journal of Engineering Sciences, 5-2 (2011) 1057-1061.
  • Çepni M E, Linear servo motor and control, Ph.D. Thesis, İstanbul Teknik University Graduate School of Science Engineering and Technology, Turkey, 2010.
  • Yang C J, Niu B & Chen Y, Adaptive neuro-fuzzy control based development of a wearable exoskeleton leg for human walking power augmentation, paper presented at IEEE/ASME International Conference On Advanced Intelligent Mechatronics (AIM 2005), Monterey, California, USA, 2005.
  • Şahin Y, Development of lower limb exoskeleton to support load-bearing human walk, Ph.D. Thesis, Selçuk University Graduate School of Science Engineering and Technology, Turkey, 2014.
  • Lo H S & Xie S Q, Medical Engineering & Physics, 34-3 (2012) 261-268.
  • Ersin Ç & Mustafa Y, Electronic Letters on Science and Engineering, 15-1 (2019) 1-11.
  • Cappello L, Binh D K, Yen S C & Masia L, Design and preliminary characterization of a soft wearable exoskeleton for upper limb, paper presented at IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob), Singapur, 2016.
  • Közkurt, C., & Soyaslan, M. Euler bilekli scara robot kolu için kinematik analiz yazılımı geliştirilmesi, paper presented at 6th International Advanced Technologies Symposium (IATS’11), Elazığ, Turkey, 2011..
  • Hsiao J C, Shivam K, Chou C L & Kam T Y. Applied Sciences, 10-7 (2020) 2223.
  • Bayrak A & Sarıtaş M. Five-axis robot arm simulation and obstacle / target tracking, paper presented at International Conference on Electrical and Electronics Engineering (ELECO), Bursa, Turkey, 2008.
  • Cempini M, De Rossi S M M, Lenzi T, Cortese M, Giovacchini F, Vitiello N & Carrozza M C. Kinematics and design of a portable and wearable exoskeleton for hand rehabilitation, paper presented at 13th International Conference on Rehabilitation Robotics (ICORR), Seattle, USA, 2013.
  • Gökçe H, Yavuz M & Karayel M. Gazi Journal of Engineering Sciences (GJES), 3-2 (2017) 27-32.
  • Neslihan T, Gökçe H & Şahin İ. Selcuk-Technic Journal, 18-1 (2019) 1-13.
  • Şahin İ. Geometry Based Topology Optimization in Suspension Hooks Used in Ammunition Systems, paper presented at 3rd International Symposium on Industrial Design & Engineering (ISIDE). Antalya, Turkey, 2018.

Upper Limb Robot Arm System Design and Kinematic Analysis

Yıl 2020, Cilt: 7 Sayı: 3, 1320 - 1331, 30.09.2020
https://doi.org/10.31202/ecjse.753267

Öz

In this study, a wearable upper limb robot arm design has been designed for individuals who experience discomfort in the arm muscle and experience power loss. The user with arm discomfort can attach the designed system to her arm and perform daily life activities like healthy individuals. The upper limb robot arm system is designed in Solidworks program. The system is attached to the waist of the user and wraps the entire arm. The designed robot arm system is designed to be produced of 5 cm thick aluminum material. Angular servo motors are mounted from the joints to the wrists and elbows. Linear motor is mounted to the shoulder part of the upper limb system to provide both vertical and horizontal movement. Necessary analyses were done for the mechanism designed with the help of Solidworks software. The safety coefficients of the arm, hand and shoulder apparatuses were calculated for a maximum load of 250 Newtons. Later, restrictions were made for the necessary movements and the powers and torque values of the motors to be used were calculated. In addition, maximum displacements were determined by making force distributions for the arm, hand and shoulder parts of the system.

Kaynakça

  • Adar N G, Ören H & Kozan R, Sakarya University Journal of Science (SAUJS), 17-1 (2013) 155-160.
  • Riai A, Madani T, Benallegue A & Djouani K, Control Engineering Practice, 75 (2018) 108-117.
  • Şenel F A & Cetişli B, Pamukkale University Journal of Engineering Sciences, 21-5 (2015).
  • Başer Ö, Şekerci B, Kızılhan H & Kılıç E, Journal of Engineering Sciences and Design, 6-3 (2018) 365-374.
  • Brahmi B, Laraki M H, Saad M, Rahman M H, Ochoa-Luna C & Brahmi A, Robotics and Autonomous Systems, 117 (2019) 92-102.
  • Theurel J, Desbrosses K, Roux T & Savescu A, Applied Ergonomics, 67 (2018) 211-217.
  • Spada S, Ghibaudo L, Gilotta S, Gastaldi L & Cavatorta M P, Procedia Manufacturing, 11 (2017) 1255-1262.
  • Kocaoğlu S & Akdoğan E, Exoskeleton Robots for Rehabilitation of the Upper Limb, paper presented at International Federation of Automatic Control – TOK, Denizli, Turkey, 2015.
  • Anam K & Al-Jumaily A A, Procedia Engineering, 41 (2012) 988-994.
  • Yu H, Choi I S, Han K L, Choi J Y, Chung G & Suh J, Control Engineering Practice, 72 (2018) 104-113.
  • Eren İ, Robot arm control system design and application with more than required degree of freedom, Master's Thesis, Pamukkale University The Graduate School of Natural and Applied Sciences, Turkey 2006.
  • Iqbal J, Tsagarakis N G & Caldwell D G, Design of a wearable direct-driven optimized hand exoskeleton device, paper presented at 4th International Conference on Advances in Computer-Human Interactions (ACHI 2011), Gosier, Guadeloupe, France, 2011.
  • Stansfield B, Rooney S, Brown L, Kay M, Spoettl L & Shanmugam S, Gait & Posture, 61 (2018) 135-140.
  • Bozdemir M & Adıgüzel E, Pamukkale University Journal of Engineering Sciences, 5-2 (2011) 1057-1061.
  • Çepni M E, Linear servo motor and control, Ph.D. Thesis, İstanbul Teknik University Graduate School of Science Engineering and Technology, Turkey, 2010.
  • Yang C J, Niu B & Chen Y, Adaptive neuro-fuzzy control based development of a wearable exoskeleton leg for human walking power augmentation, paper presented at IEEE/ASME International Conference On Advanced Intelligent Mechatronics (AIM 2005), Monterey, California, USA, 2005.
  • Şahin Y, Development of lower limb exoskeleton to support load-bearing human walk, Ph.D. Thesis, Selçuk University Graduate School of Science Engineering and Technology, Turkey, 2014.
  • Lo H S & Xie S Q, Medical Engineering & Physics, 34-3 (2012) 261-268.
  • Ersin Ç & Mustafa Y, Electronic Letters on Science and Engineering, 15-1 (2019) 1-11.
  • Cappello L, Binh D K, Yen S C & Masia L, Design and preliminary characterization of a soft wearable exoskeleton for upper limb, paper presented at IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob), Singapur, 2016.
  • Közkurt, C., & Soyaslan, M. Euler bilekli scara robot kolu için kinematik analiz yazılımı geliştirilmesi, paper presented at 6th International Advanced Technologies Symposium (IATS’11), Elazığ, Turkey, 2011..
  • Hsiao J C, Shivam K, Chou C L & Kam T Y. Applied Sciences, 10-7 (2020) 2223.
  • Bayrak A & Sarıtaş M. Five-axis robot arm simulation and obstacle / target tracking, paper presented at International Conference on Electrical and Electronics Engineering (ELECO), Bursa, Turkey, 2008.
  • Cempini M, De Rossi S M M, Lenzi T, Cortese M, Giovacchini F, Vitiello N & Carrozza M C. Kinematics and design of a portable and wearable exoskeleton for hand rehabilitation, paper presented at 13th International Conference on Rehabilitation Robotics (ICORR), Seattle, USA, 2013.
  • Gökçe H, Yavuz M & Karayel M. Gazi Journal of Engineering Sciences (GJES), 3-2 (2017) 27-32.
  • Neslihan T, Gökçe H & Şahin İ. Selcuk-Technic Journal, 18-1 (2019) 1-13.
  • Şahin İ. Geometry Based Topology Optimization in Suspension Hooks Used in Ammunition Systems, paper presented at 3rd International Symposium on Industrial Design & Engineering (ISIDE). Antalya, Turkey, 2018.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Çağatay Ersin 0000-0001-5018-9313

Mustafa Yaz 0000-0001-7042-7649

Hüseyin Gökçe 0000-0002-2113-1611

Yayımlanma Tarihi 30 Eylül 2020
Gönderilme Tarihi 16 Haziran 2020
Kabul Tarihi 20 Ağustos 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 7 Sayı: 3

Kaynak Göster

IEEE Ç. Ersin, M. Yaz, ve H. Gökçe, “Upper Limb Robot Arm System Design and Kinematic Analysis”, ECJSE, c. 7, sy. 3, ss. 1320–1331, 2020, doi: 10.31202/ecjse.753267.