Araştırma Makalesi
BibTex RIS Kaynak Göster

Deprem Yüklerinin Tamamının Betonarme Perde Duvarlarla Karşılandığı Binalarda Bağ Kirişi Modellerinin Yapı Performansına Etkisi

Yıl 2021, Cilt: 8 Sayı: 1, 346 - 362, 31.01.2021
https://doi.org/10.31202/ecjse.807608

Öz

Deprem yüklerinin tamamının betonarme perde duvarlarla karşılandığı yapıların çekirdeğinde yer alan merdiven ve asansör boşluklarının çevresindeki perdeler genellikle birbirlerine bağ kirişleri ile bağlanmaktadır. Bu çalışmanın amacı, farklı betonarme bağ kirişi tiplerinin, deprem yüklerinin tamamının betonarme perde duvarlarla karşılandığı analiz modellerinin yapı performansına olan etkilerinin incelenmesidir. Bu çalışmada 16 katlı, düşey taşıyıcı olarak tamamen perdelerin kullanıldığı bina modelinin, Türkiye Bina Deprem Yönetmeliği (2018)’e göre, İstanbul Atatürk Havaalanı bölgesinin yer ivmesine göre her bir betonarme bağ kirişi modeli için doğrusal olmayan itme analizi yapılmıştır. Yapılan analiz sonuçları incelendiğinde farklı betonarme bağ kirişi tiplerinin yapı performans hedeflerinde ciddi etkilerinin olduğu görülmüştür.

Kaynakça

  • [1] G. C. Cai, J. Zhao, H. Degee, and B. Vandoren, "Shear capacity of steel fibre reinforced concrete coupling beams using conventional reinforcements," (in English), Eng Struct, vol. 128, pp. 428-440, Dec 1 2016, doi: 10.1016/j.engstruct.2016.09.056.
  • [2] K. Du, H. Luo, J. L. Bai, and J. J. Sun, "Integrating of Nonlinear Shear Models into Fiber Element for Modeling Seismic Behavior of Reinforced Concrete Coupling Beams, Wall Piers, and Overall Coupled Wall Systems," (in English), Int J Concr Struct M, vol. 13, no. 1, Jun 3 2019, doi: UNSP 34 10.1186/s40069-019-0346-z.
  • [3] M. S. Montgomery, "Fork Configuration Damper (FCDs) for Enhanced Dynamic Performance of High-rise Buildings," University of Toronto, vol. Doctor of Philosophy, 2013.
  • [4] FEMA, "FEMA 306 Evaluation of Earthquake Damaged Concrete and Masonry Wall," (in English), Federal Emergency Management Agency, Washington DC., 1998.
  • [5] Y. Boivin, "Assessment of the seismic performance of a 12-storey ductile concrete shear wall system designed according to the nbcc 2005 and the csa a23.3 2004 standard," Université de Sherbrooke, 2006.
  • [6] ACI, "ACI 318-19 Building Code Requirements for Structural Concrete," (in English), American Concrete Institute, Farmington Hills MI., 2019, doi: 10.14359/51716937.
  • [7] A. Eljadei, "Performance Based Design of Coupled Wall Structures," Doctor of Philosophy, Doctor of Philosophy, University of Pittsburgh, Doctor of Philosophy, 2012.
  • [8] W. Hou, S. L. Xu, D. S. Ji, Q. H. Li, and P. Zhang, "Seismic performance of steel plate reinforced high toughness concrete coupling beams with different steel plate ratios," (in English), Compos Part B-Eng, vol. 159, pp. 199-210, Feb 15 2019, doi: 10.1016/j.compositesb.2018.09.100.
  • [9] B. G. Gong and B. M. Shahrooz, "Steel-concrete composite coupling beams - behavior and design," (in English), Eng Struct, vol. 23, no. 11, pp. 1480-1490, Nov 2001, doi: Doi 10.1016/S0141-0296(01)00042-6.
  • [10] Y. Choi, P. Hajyalikhani, and S. H. Chao, "Seismic Performance of Innovative Reinforced Concrete Coupling Beam-Double-Beam Coupling Beam," (in English), Aci Struct J, vol. 115, no. 1, pp. 113-125, Jan-Feb 2018, doi: 10.14359/51700951.
  • [11] A. Keleş, E. and M. Kaya Keleş, "İnşaat Sektöründe Kullanımı Artan Bilgisayar Yazılımları ve Bilgi Teknolojilerinin İrdelenmesi," El-Cezeri Journal of Science and Engineering, Research Article vol. 5, pp. 610-617, 2018.
  • [12] (2020). İdeYapı Ltd Şti, Şişli – İstanbul.
  • [13] Integrated Building Design Software. (2020). Computers and Structures, Inc., Berkeley, CA.
  • [14] Ö. Özer and S. B. Yüksel, "Deprem Etkilerinin Betonarme Çerçeveler İle Boşluklu Betonarme Perdeler Tarafindan Birlikte Karşılandığı Yüksek Binaların Analiz Sonuçlarının Tbdy, (2018) Ve Dbybhy, (2007) ’Ye Göre Karşilaştırılması," Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, Research Article vol. 9, pp. 931 - 945, 2020, doi: 10.28948/ngmuh.694781.
  • [15] TBDY, Türkiye Bina Deprem Yönetmeliği (TBDY-2018). Ankara: Afet ve Acil Durum Yönetimi Başkanlığı, 2018.
  • [16] S. Foroughi̇, R. Jamal, and S. B. Yüksel, "Sargı Donatısı ve Eksenel Yük Seviyesinin Betonarme Kolonların Eğrilik Süneklik ile Etkin Kesit Rijitliğe Etkisi," El-Cezeri Journal of Science and Engineering, Research Article vol. 7, pp. 1309 - 1319, 2020, doi: 10.31202/ecjse.750775.
  • [17] Design of Structures For Earthquake Resistance, Eurocode8, 2004.

The Effect of Coupled Beam Models in Buildings Where Earthquake Loads are Fully Resisted by R/C Shear Walls on Structural Performance

Yıl 2021, Cilt: 8 Sayı: 1, 346 - 362, 31.01.2021
https://doi.org/10.31202/ecjse.807608

Öz

Reinforced concrete shear walls around the stairs and elevator shafts, which are at the core of the structures where earthquake loads are fully resisted R/C shear walls, are generally connected to each other with coupled beams. The aim of this study is to examine the effects of different reinforced concrete coupled beam types and analysis models whose earthquake loads are fully resisted by R/C shear walls on the performance of the building. In this study, nonlinear pushover analysis was performed for each R/C coupled beam model according to the ground acceleration of the Istanbul Ataturk Airport region according to the Turkish Building Earthquake Code (2018) of the 16-storey building model, which uses fully shear walls as vertical carrier. When the analysis results are examined, it has been seen that different reinforced concrete coupled beam types have serious effects on structural performance targets.

Kaynakça

  • [1] G. C. Cai, J. Zhao, H. Degee, and B. Vandoren, "Shear capacity of steel fibre reinforced concrete coupling beams using conventional reinforcements," (in English), Eng Struct, vol. 128, pp. 428-440, Dec 1 2016, doi: 10.1016/j.engstruct.2016.09.056.
  • [2] K. Du, H. Luo, J. L. Bai, and J. J. Sun, "Integrating of Nonlinear Shear Models into Fiber Element for Modeling Seismic Behavior of Reinforced Concrete Coupling Beams, Wall Piers, and Overall Coupled Wall Systems," (in English), Int J Concr Struct M, vol. 13, no. 1, Jun 3 2019, doi: UNSP 34 10.1186/s40069-019-0346-z.
  • [3] M. S. Montgomery, "Fork Configuration Damper (FCDs) for Enhanced Dynamic Performance of High-rise Buildings," University of Toronto, vol. Doctor of Philosophy, 2013.
  • [4] FEMA, "FEMA 306 Evaluation of Earthquake Damaged Concrete and Masonry Wall," (in English), Federal Emergency Management Agency, Washington DC., 1998.
  • [5] Y. Boivin, "Assessment of the seismic performance of a 12-storey ductile concrete shear wall system designed according to the nbcc 2005 and the csa a23.3 2004 standard," Université de Sherbrooke, 2006.
  • [6] ACI, "ACI 318-19 Building Code Requirements for Structural Concrete," (in English), American Concrete Institute, Farmington Hills MI., 2019, doi: 10.14359/51716937.
  • [7] A. Eljadei, "Performance Based Design of Coupled Wall Structures," Doctor of Philosophy, Doctor of Philosophy, University of Pittsburgh, Doctor of Philosophy, 2012.
  • [8] W. Hou, S. L. Xu, D. S. Ji, Q. H. Li, and P. Zhang, "Seismic performance of steel plate reinforced high toughness concrete coupling beams with different steel plate ratios," (in English), Compos Part B-Eng, vol. 159, pp. 199-210, Feb 15 2019, doi: 10.1016/j.compositesb.2018.09.100.
  • [9] B. G. Gong and B. M. Shahrooz, "Steel-concrete composite coupling beams - behavior and design," (in English), Eng Struct, vol. 23, no. 11, pp. 1480-1490, Nov 2001, doi: Doi 10.1016/S0141-0296(01)00042-6.
  • [10] Y. Choi, P. Hajyalikhani, and S. H. Chao, "Seismic Performance of Innovative Reinforced Concrete Coupling Beam-Double-Beam Coupling Beam," (in English), Aci Struct J, vol. 115, no. 1, pp. 113-125, Jan-Feb 2018, doi: 10.14359/51700951.
  • [11] A. Keleş, E. and M. Kaya Keleş, "İnşaat Sektöründe Kullanımı Artan Bilgisayar Yazılımları ve Bilgi Teknolojilerinin İrdelenmesi," El-Cezeri Journal of Science and Engineering, Research Article vol. 5, pp. 610-617, 2018.
  • [12] (2020). İdeYapı Ltd Şti, Şişli – İstanbul.
  • [13] Integrated Building Design Software. (2020). Computers and Structures, Inc., Berkeley, CA.
  • [14] Ö. Özer and S. B. Yüksel, "Deprem Etkilerinin Betonarme Çerçeveler İle Boşluklu Betonarme Perdeler Tarafindan Birlikte Karşılandığı Yüksek Binaların Analiz Sonuçlarının Tbdy, (2018) Ve Dbybhy, (2007) ’Ye Göre Karşilaştırılması," Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, Research Article vol. 9, pp. 931 - 945, 2020, doi: 10.28948/ngmuh.694781.
  • [15] TBDY, Türkiye Bina Deprem Yönetmeliği (TBDY-2018). Ankara: Afet ve Acil Durum Yönetimi Başkanlığı, 2018.
  • [16] S. Foroughi̇, R. Jamal, and S. B. Yüksel, "Sargı Donatısı ve Eksenel Yük Seviyesinin Betonarme Kolonların Eğrilik Süneklik ile Etkin Kesit Rijitliğe Etkisi," El-Cezeri Journal of Science and Engineering, Research Article vol. 7, pp. 1309 - 1319, 2020, doi: 10.31202/ecjse.750775.
  • [17] Design of Structures For Earthquake Resistance, Eurocode8, 2004.
Toplam 17 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Ömer Özer 0000-0002-5126-6832

Bahadır Yüksel 0000-0002-4175-1156

Yayımlanma Tarihi 31 Ocak 2021
Gönderilme Tarihi 8 Ekim 2020
Kabul Tarihi 1 Aralık 2020
Yayımlandığı Sayı Yıl 2021 Cilt: 8 Sayı: 1

Kaynak Göster

IEEE Ö. Özer ve B. Yüksel, “Deprem Yüklerinin Tamamının Betonarme Perde Duvarlarla Karşılandığı Binalarda Bağ Kirişi Modellerinin Yapı Performansına Etkisi”, ECJSE, c. 8, sy. 1, ss. 346–362, 2021, doi: 10.31202/ecjse.807608.