Araştırma Makalesi
BibTex RIS Kaynak Göster

Model Biyomimetik Nanoyapılarda Yapışma Mekanizmalarını Anlamak

Yıl 2021, Cilt: 8 Sayı: 1, 220 - 230, 31.01.2021
https://doi.org/10.31202/ecjse.822124

Öz

Bu çalışma, moleküler dinamik simülasyon metodunu kullanarak biyomimetik elastomerik nanoyapıların temel yapışma mekanizmalarını araştırdı. Düz bir alt tabaka ile etkileşime giren özellikli olarak şekillendirilmiş bir sütun şeklindeki bir boncuk ağına dayanan model, yapışmanın yönselliğini ve geometrik asimetriyi yakaladığını göstermiştir. Simülasyon sonuçları benzer sistemlerin deneysel sonuçlarıyla mükemmel bir uyum göstermiştir. Sonuçlarımız, güçlü yapışma ve kolay ayrılmanın arkasındaki mekanizmaları açıklayabilmiştir. Yer değiştirme, sütun eğiminin açısına zıt yönde uygulandığında ortaya çıkan gerilme konsantrasyonu, bir fermuar açma efekti göstererek olarak kolay ayrılma sağladı. Ayrıca yer değiştirme açısının değiştirilmesiyle genel yapışma mukavemetinin 4 kat veya daha fazla artırılabileceğini veya azaltılabileceğini gözlemledik. Bu çalışmanın, istenen yapışma ve ayrılma özelliklerine sahip benzersiz bir şekilde tasarlanmış mikro veya nanoyapılar oluşturabilme üzerinde potansiyel etkileri vardır.

Kaynakça

  • [1] "Functional Vertebrate Morphology — Milton Hildebrand, Dennis M. Bramble, Karel F. Liem, David B. Wake | Harvard University Press".
  • [2] Autumn K, Liang YA, Hsieh ST, Zesch W, Chan WP, Kenny TW, et al. "Adhesive force of a single gecko foot-hair". Nature, 2000, 405 (6787): 681–5.
  • [3] Lee J, Fearing RS, Komvopoulos K. "Directional adhesion of gecko-inspired angled microfiber arrays". Appl Phys Lett, 2008, 93 (19): 191910.
  • [4] Kamperman M, Kroner E, Campo A del, McMeeking RM, Arzt E. "Functional Adhesive Surfaces with “Gecko” Effect: The Concept of Contact Splitting". Adv Eng Mater, 2010, 12 (5): 335–48.
  • [5] Yao H, Rocca GD, Guduru P r, Gao H. "Adhesion and sliding response of a biologically inspired fibrillar surface: experimental observations". J R Soc Interface, 2008, 5 (24): 723–33.
  • [6] Schubert BE, Gillies AG, Fearing RS. "Angled microfiber arrays as low-modulus, low Poisson\textquotesingles ratio compliant substrates". J Micromechanics Microengineering, 2014, 24 (6): 065016.
  • [7] Brodoceanu D, Bauer CT, Kroner E, Arzt E, Kraus T. "Hierarchical bioinspired adhesive surfaces—a review". Bioinspir Biomim, 2016, 11 (5): 051001.
  • [8] Yarovsky I, Evans E. "Computer simulation of structure and properties of crosslinked polymers: application to epoxy resins". Polymer, 2002, 43 (3): 963–9.
  • [9] Heine DR, Grest GS, Lorenz CD, Tsige M, Stevens MJ. "Atomistic Simulations of End-Linked Poly(dimethylsiloxane) Networks:  Structure and Relaxation". Macromolecules, 2004, 37 (10): 3857–64.
  • [10] Stevens MJ. "Interfacial Fracture between Highly Cross-Linked Polymer Networks and a Solid Surface:  Effect of Interfacial Bond Density". Macromolecules, 2001, 34 (8): 2710–8.
  • [11] Tsige M, Lorenz C, Stevens M. "Role of network connectivity on the mechanical properties of highly cross-linked polymers". 2004, .
  • [12] Tsige M, Stevens MJ. "Effect of Cross-Linker Functionality on the Adhesion of Highly Cross-Linked Polymer Networks:  A Molecular Dynamics Study of Epoxies". Macromolecules, 2004, 37 (2): 630–7.
  • [13] Dirama TE, Varshney V, Anderson KL, Shumaker JA, Johnson JA. "Coarse-grained molecular dynamics simulations of ionic polymer networks". Mech Time-Depend Mater, 2008, 12 (3): 205–20.
  • [14] Plimpton S. "Fast Parallel Algorithms for Short-Range Molecular Dynamics". J Comput Phys, 1995, 117 (1): 1–19.
  • [15] Verlet L. "Computer “Experiments” on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules". Phys Rev, 1967, 159 (1): 98–103.

Understanding the Mechanisms of Adhesion on Model Biomimetic Nanostructures

Yıl 2021, Cilt: 8 Sayı: 1, 220 - 230, 31.01.2021
https://doi.org/10.31202/ecjse.822124

Öz

This work investigated the basic adhesion mechanisms of biomimetic elastomeric nanostructures using molecular dynamics simulation. The model based on a network of beads in the form of a specifically shaped pillar interacting with a flat substrate has demonstrated to capture the directionality of adhesion and the geometric asymmetry. The simulation results showed an excellent match with the experimental results of similar systems. Our results have explained the mechanisms behind strong adhesion and easy detachment. The stress concentration occurring when the displacement is imposed in the opposite direction to the angle of pillar tilt allows easy detachment as an unzipping effect. We have also found that by switching the angle of displacement one can increase or decrease the overall adhesion strength 4-folds or more. This work has potential implications for creating uniquely designed micro or nano-structures with desired attachment and detachment properties.

Kaynakça

  • [1] "Functional Vertebrate Morphology — Milton Hildebrand, Dennis M. Bramble, Karel F. Liem, David B. Wake | Harvard University Press".
  • [2] Autumn K, Liang YA, Hsieh ST, Zesch W, Chan WP, Kenny TW, et al. "Adhesive force of a single gecko foot-hair". Nature, 2000, 405 (6787): 681–5.
  • [3] Lee J, Fearing RS, Komvopoulos K. "Directional adhesion of gecko-inspired angled microfiber arrays". Appl Phys Lett, 2008, 93 (19): 191910.
  • [4] Kamperman M, Kroner E, Campo A del, McMeeking RM, Arzt E. "Functional Adhesive Surfaces with “Gecko” Effect: The Concept of Contact Splitting". Adv Eng Mater, 2010, 12 (5): 335–48.
  • [5] Yao H, Rocca GD, Guduru P r, Gao H. "Adhesion and sliding response of a biologically inspired fibrillar surface: experimental observations". J R Soc Interface, 2008, 5 (24): 723–33.
  • [6] Schubert BE, Gillies AG, Fearing RS. "Angled microfiber arrays as low-modulus, low Poisson\textquotesingles ratio compliant substrates". J Micromechanics Microengineering, 2014, 24 (6): 065016.
  • [7] Brodoceanu D, Bauer CT, Kroner E, Arzt E, Kraus T. "Hierarchical bioinspired adhesive surfaces—a review". Bioinspir Biomim, 2016, 11 (5): 051001.
  • [8] Yarovsky I, Evans E. "Computer simulation of structure and properties of crosslinked polymers: application to epoxy resins". Polymer, 2002, 43 (3): 963–9.
  • [9] Heine DR, Grest GS, Lorenz CD, Tsige M, Stevens MJ. "Atomistic Simulations of End-Linked Poly(dimethylsiloxane) Networks:  Structure and Relaxation". Macromolecules, 2004, 37 (10): 3857–64.
  • [10] Stevens MJ. "Interfacial Fracture between Highly Cross-Linked Polymer Networks and a Solid Surface:  Effect of Interfacial Bond Density". Macromolecules, 2001, 34 (8): 2710–8.
  • [11] Tsige M, Lorenz C, Stevens M. "Role of network connectivity on the mechanical properties of highly cross-linked polymers". 2004, .
  • [12] Tsige M, Stevens MJ. "Effect of Cross-Linker Functionality on the Adhesion of Highly Cross-Linked Polymer Networks:  A Molecular Dynamics Study of Epoxies". Macromolecules, 2004, 37 (2): 630–7.
  • [13] Dirama TE, Varshney V, Anderson KL, Shumaker JA, Johnson JA. "Coarse-grained molecular dynamics simulations of ionic polymer networks". Mech Time-Depend Mater, 2008, 12 (3): 205–20.
  • [14] Plimpton S. "Fast Parallel Algorithms for Short-Range Molecular Dynamics". J Comput Phys, 1995, 117 (1): 1–19.
  • [15] Verlet L. "Computer “Experiments” on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules". Phys Rev, 1967, 159 (1): 98–103.
Toplam 15 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Taner Dirama 0000-0003-1975-6505

Yayımlanma Tarihi 31 Ocak 2021
Gönderilme Tarihi 5 Kasım 2020
Kabul Tarihi 15 Ocak 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 8 Sayı: 1

Kaynak Göster

IEEE T. Dirama, “Understanding the Mechanisms of Adhesion on Model Biomimetic Nanostructures”, ECJSE, c. 8, sy. 1, ss. 220–230, 2021, doi: 10.31202/ecjse.822124.