Alüminyum Elektrotlar Kullanılarak Elektrokoagülasyon Yöntemi ile Sulardan Fosfat Gideriminde pH'ın Etkisi
Yıl 2021,
Cilt: 8 Sayı: 3, 1472 - 1479, 30.09.2021
Şahset İrdemez
,
Züleyha Bingül
,
Sinan Kul
,
Fatma Ekmekyapar Torun
,
Nuhi Demircioğlu
Öz
Bu çalışmada, alüminyum plaka elektrotlar kullanılarak elektrokoagülasyon yöntemiyle sentetik olarak hazırlanmış sulardan fosfat giderimi üzerine atıksu pH'sının etkisi araştırılmıştır. Bu amaçla, 3-10 arasında değişen başlangıç pH değerlerinde deneyler yapılmış ve atıksuyun başlangıç pH’sının fosfat giderim verimliliği, enerji tüketimi ve reaksiyon hızı üzerindeki etkisi analiz edilmiştir. Elde edilen sonuçlardan optimum atıksuyun başlangıç pH'larının 3 ve 4 olduğu tespit edilmiştir. Çünkü düşük pH ‘larda hem fosfat giderim verimi yüksek hem de sistemin enerji tüketimi düşüktür. pHi=3'te 20 dakikada %97 giderim verimine ulaşılırken, atıksu başlangıç pH’sının artmasıyla bu arıtım süresi de artmaktadır. Bu veriler, daha düşük başlangıç pH'larında giderim veriminin daha yüksek olduğunu göstermektedir. pHi=3'te 1. derece reaksiyon hızı sabiti k1=0.2154 dak-1 iken, pHi=10'da bu değer k1=0.071 dak-1'e düşmektedir. pHi=3'te sistemin enerji tüketimi 12 dakikalık temas süresinde 0.553 kwh m-3 olarak belirlenmiştir. Ayrıca denemeler sırasında yapılan ölçümlerde en yüksek PO4-P gideriminin sistemin pH’sının 5-7 arasında olduğu dönemde gerçekleştiği tespit edilmiştir.
Kaynakça
- [1] Roig B., Gonzalez C., Thomas O., “Simple UV/UV-visible method for nitrogen and phosphorus measurement in wastewater”, Talanta, 1999, 50(4):751-758. https://doi.org/10.1016/S0039-9140(99)00203-9.
- [2] Preisner M., Neverova-Dziopak E., Kowalewski Z., “Mitigation of eutrophication caused by wastewater discharge: A simulation-based approach”. Ambio, 2021, 50:413-424. https://doi.org/10.1007/s13280-020-01346-4.
- [3] Sommariva C., Converti A., Borghi M. D., “Increase in phosphate removal from wastewater by alternating aerobic and anaerobic conditions”, Desalination, 1996, 255-260.
- [4] Le Moal M., Gascuel-Odoux C., Ménesguen A., Souchon Y., C. Étrillard, Levain A., Moatar F., Pannard A., Souchu P., Lefebvre A., Pinay G., “Eutrophication: A new wine in an old bottle?”, Science of The Total Environment, 2019, 651:11-11. https://doi.org/10.1016/j.scitotenv.2018.09.139.
- [5] Andersen J. H., Schlüter L., Ærtebjerg G., “Coastal eutrophication: recent developments in definitions and implications for monitoring strategies”, Journal of Plankton Research, 2006, 28(7):621–628. https://doi.org/10.1093/plankt/fbl001.
- [6] Hashim K. S., Ewadh H. M., Muhsin A. A., Zubaidi S. L., Kot P., Muradov M., Aljefery M., Al-Khaddar R., “Phosphate removal from water using bottom ash: adsorption performance, coexisting anions and modelling studies”, Water Science and Technology, 2021, 83(1):77–89. https://doi.org/10.2166/wst.2020.561.
- [7] Huang H., Liu J., Zhang P., Zhang D., Gao F., “Investigation on the simultaneous removal of fluoride, ammonia nitrogen and phosphate from semiconductor wastewater using chemical precipitation”, Chemical Engineering Journal, 2017, 307:696-706. https://doi.org/10.1016/j.cej.2016.08.134.
- [8] Blaney L. M., Cinar S., SenGupta A. K., “Hybrid anion exchanger for trace phosphate removal from water and wastewater”, Water Research, 2007, 41(7):1603-1613. https://doi.org/10.1016/j.watres.2007.01.008.
- [9] Zhang Y., Desmidt E., Van Looveren A., Pinoy L., Meesschaert B., Van der Bruggen B., “Phosphate Separation and Recovery from Wastewater by Novel Electrodialysis”, Environ Sci Technol, 2013, 47(11):5888–5895. https://doi.org/10.1021/es4004476.
- [10] Yang Y., Lohwacharin J., Takizawa S., “Hybrid ferrihydrite-MF/UF membrane filtration for the simultaneous removal of dissolved organic matter and phosphate”, Water Research, 2014, 65:177-185. https://doi.org/10.1016/j.watres.2014.07.030.
- [11] İrdemez Ş., Demircioğlu N., Yildiz Y. Ş., Bingül Z., “The effects of current density and phosphate concentration on phosphate removal from wastewater by electrocoagulation using aluminum and iron plate electrodes”, Separation and Purification Technology, 2006a, 52(2):218-223.https://doi.org/10.1016/j.seppur.2006.04.008.
- [12] Muduli M., Sonpal V., Trivedi K., Haldar S., Kumar M. A., Ray S., “12 - Enhanced biological phosphate removal process for wastewater treatment: a sustainable approach”, Wastewater Treatment Reactors, 2021, 273-287. https://doi.org/10.1016/B978-0-12-823991-9.00012-5.
- [13] Rubio-Rincón F. J., Lopez-Vazquez C. M., Welles L., Van Loosdrecht M. C. M., Brdjanovic D., “Cooperation between Candidatus Competibacter and Candidatus Accumulibacter clade I, in denitrification and phosphate removal processes”, Water Research, 2017, 120:156-164. https://doi.org/10.1016/j.watres.2017.05.001.
- [14] İrdemez Ş., Demircioğlu N., Yildiz Y. Ş., “The effects of pH on phosphate removal from wastewater by electrocoagulation with iron plate electrodes”, Journal of Hazardous Materials, 2006b, 137(2):1231-1235.https://doi.org/10.1016/j.jhazmat.2006.04.019.
- [15] Barrera-Díaz C., Bilyeu B., Roa G., Bernal-Martinez L., “Physicochemical Aspects of Electrocoagulation”, Separation & Purification Reviews, 2011, 40(1):1-24, DOI: 10.1080/15422119.2011.542737.
- [16] Koparal A. S., Öğütveren Ü. B., “Removal of nitrate from water by electroreduction and electrocoagulation”, Journal of Hazardous Materials, 2002, B89:83-94.
- [17] Kabdaşlı I., Arslan-Alaton I., Ölmez-Hancı T., Tünay O., “Electrocoagulation applications for industrial wastewaters: a critical review”, Environmental Technology Reviews, 2012, 1(1):2-45. DOI: 10.1080/21622515.2012.715390.
- [18] Kobya M., Bayramoglu M., Eyvaz M., “Techno-economical evaluation of electrocoagulation for the textile wastewater using different electrode connections”, Journal of Hazardous Materials, 2007, 148(1–2):311-318. https://doi.org/10.1016/j.jhazmat.2007.02.036.
- [19] Bingül Z., Irdemez Ş., Demircioğlu N., “Effect of controlled and uncontrolled pH on tannery wastewater treatment by the electrocoagulation process”, International Journal of Environmental Analytical Chemistry, 2021. DOI: 10.1080/03067319.2021.1925261.
- [20] Gönder Z. B., Balcıoğlu G., Vergili I., Kaya Y., “Electrochemical treatment of carwash wastewater using Fe and Al electrode: Techno-economic analysis and sludge characterization”, Journal of Environmental Management, 2017, 200:380-390. https://doi.org/10.1016/j.jenvman.2017.06.005.
- [21] Sahu O. P., Gupta V., Chaudhari P.K., Srivastava V. C., “Electrochemical treatment of actual sugar industry wastewater using aluminum electrode”, Int J Environ Sci Techno, 2015, 12:3519–3530. https://doi.org/10.1007/s13762-015-0774-5.
- [22] Kobya M., Can O. T., Bayramoglu M., “Treatment of textile wastewaters by electrocoagulation using iron and aluminum electrodes”, Journal of Hazardous Materials, 2003, 100(1–3):163-178. https://doi.org/10.1016/S0304-3894(03)00102-X.
- [23] Bener S., Bulca Ö., Palas B., Tekin G., Atalay S., Ersöz G., “Electrocoagulation process for the treatment of real textile wastewater: Effect of operative conditions on the organic carbon removal and kinetic study”, Process Safety and Environmental Protection, 2019, 129:47-54.
https://doi.org/10.1016/j.psep.2019.06.010.
- [24] Krishna B. M., Murthy U. N., Kumar B. M., Lokesh K.S., “Electrochemical pretreatment of distillery wastewater using aluminum electrode”, J Appl Electrochem, 2010, 40:663-673.
- [25] Yilmaz A. E., Boncukcuoğlu R., Kocakerim M. M., “A quantitative comparison between electrocoagulation and chemical coagulation for boron removal from boron-containing solution”, Journal Hazardous Materials, 2007 149:475–481.
- [26] Gökkuş Ö., Yıldız Y. Ş., “Application of electrocoagulation for treatment of medical waste sterilization plant wastewater and optimization of the experimental conditions”, Clean Techn. Environ. Policy, 2015, 17:1717–1725. https://doi.org/10.1007/s10098-014-0897-2
The Effect of pH on Removal of Phosphate from Water Using Aluminum Electrodes by Electrocoagulation Method
Yıl 2021,
Cilt: 8 Sayı: 3, 1472 - 1479, 30.09.2021
Şahset İrdemez
,
Züleyha Bingül
,
Sinan Kul
,
Fatma Ekmekyapar Torun
,
Nuhi Demircioğlu
Öz
: In this study, the effect of wastewater pH on phosphate removal by electrocoagulation method using aluminum plate electrodes was investigated. For this purpose, experiments were carried out at initial pH values ranging from 3-10, and the effect of the initial pH of the wastewater on phosphate removal efficiency, energy consumption and reaction rate was analyzed. From the results obtained, it was determined that the initial pHs of the optimum wastewater was 3 and 4. Because at low pH, both phosphate removal efficiency is high and the energy consumption of the system is low. While 97% removal efficiency is reached in 20 minutes at pHi=3, it increases in this period with the increase of the wastewater initial pH. These data show that the removal rate is higher at lower initial pHs. While the 1st degree reaction rate constant at pHi=3 is k1=0.2154 min-1, this value decreases to k1=0.071 min-1 at pHi=10. At pHi=3, the energy consumption of the system has been determined as 0.553 kWh m-3 in 12 minutes of contact time. In addition, in the measurements made during the trials, it was observed that the highest PO4-P removal occurred during the period when the pH of the system was between 5-7.
Kaynakça
- [1] Roig B., Gonzalez C., Thomas O., “Simple UV/UV-visible method for nitrogen and phosphorus measurement in wastewater”, Talanta, 1999, 50(4):751-758. https://doi.org/10.1016/S0039-9140(99)00203-9.
- [2] Preisner M., Neverova-Dziopak E., Kowalewski Z., “Mitigation of eutrophication caused by wastewater discharge: A simulation-based approach”. Ambio, 2021, 50:413-424. https://doi.org/10.1007/s13280-020-01346-4.
- [3] Sommariva C., Converti A., Borghi M. D., “Increase in phosphate removal from wastewater by alternating aerobic and anaerobic conditions”, Desalination, 1996, 255-260.
- [4] Le Moal M., Gascuel-Odoux C., Ménesguen A., Souchon Y., C. Étrillard, Levain A., Moatar F., Pannard A., Souchu P., Lefebvre A., Pinay G., “Eutrophication: A new wine in an old bottle?”, Science of The Total Environment, 2019, 651:11-11. https://doi.org/10.1016/j.scitotenv.2018.09.139.
- [5] Andersen J. H., Schlüter L., Ærtebjerg G., “Coastal eutrophication: recent developments in definitions and implications for monitoring strategies”, Journal of Plankton Research, 2006, 28(7):621–628. https://doi.org/10.1093/plankt/fbl001.
- [6] Hashim K. S., Ewadh H. M., Muhsin A. A., Zubaidi S. L., Kot P., Muradov M., Aljefery M., Al-Khaddar R., “Phosphate removal from water using bottom ash: adsorption performance, coexisting anions and modelling studies”, Water Science and Technology, 2021, 83(1):77–89. https://doi.org/10.2166/wst.2020.561.
- [7] Huang H., Liu J., Zhang P., Zhang D., Gao F., “Investigation on the simultaneous removal of fluoride, ammonia nitrogen and phosphate from semiconductor wastewater using chemical precipitation”, Chemical Engineering Journal, 2017, 307:696-706. https://doi.org/10.1016/j.cej.2016.08.134.
- [8] Blaney L. M., Cinar S., SenGupta A. K., “Hybrid anion exchanger for trace phosphate removal from water and wastewater”, Water Research, 2007, 41(7):1603-1613. https://doi.org/10.1016/j.watres.2007.01.008.
- [9] Zhang Y., Desmidt E., Van Looveren A., Pinoy L., Meesschaert B., Van der Bruggen B., “Phosphate Separation and Recovery from Wastewater by Novel Electrodialysis”, Environ Sci Technol, 2013, 47(11):5888–5895. https://doi.org/10.1021/es4004476.
- [10] Yang Y., Lohwacharin J., Takizawa S., “Hybrid ferrihydrite-MF/UF membrane filtration for the simultaneous removal of dissolved organic matter and phosphate”, Water Research, 2014, 65:177-185. https://doi.org/10.1016/j.watres.2014.07.030.
- [11] İrdemez Ş., Demircioğlu N., Yildiz Y. Ş., Bingül Z., “The effects of current density and phosphate concentration on phosphate removal from wastewater by electrocoagulation using aluminum and iron plate electrodes”, Separation and Purification Technology, 2006a, 52(2):218-223.https://doi.org/10.1016/j.seppur.2006.04.008.
- [12] Muduli M., Sonpal V., Trivedi K., Haldar S., Kumar M. A., Ray S., “12 - Enhanced biological phosphate removal process for wastewater treatment: a sustainable approach”, Wastewater Treatment Reactors, 2021, 273-287. https://doi.org/10.1016/B978-0-12-823991-9.00012-5.
- [13] Rubio-Rincón F. J., Lopez-Vazquez C. M., Welles L., Van Loosdrecht M. C. M., Brdjanovic D., “Cooperation between Candidatus Competibacter and Candidatus Accumulibacter clade I, in denitrification and phosphate removal processes”, Water Research, 2017, 120:156-164. https://doi.org/10.1016/j.watres.2017.05.001.
- [14] İrdemez Ş., Demircioğlu N., Yildiz Y. Ş., “The effects of pH on phosphate removal from wastewater by electrocoagulation with iron plate electrodes”, Journal of Hazardous Materials, 2006b, 137(2):1231-1235.https://doi.org/10.1016/j.jhazmat.2006.04.019.
- [15] Barrera-Díaz C., Bilyeu B., Roa G., Bernal-Martinez L., “Physicochemical Aspects of Electrocoagulation”, Separation & Purification Reviews, 2011, 40(1):1-24, DOI: 10.1080/15422119.2011.542737.
- [16] Koparal A. S., Öğütveren Ü. B., “Removal of nitrate from water by electroreduction and electrocoagulation”, Journal of Hazardous Materials, 2002, B89:83-94.
- [17] Kabdaşlı I., Arslan-Alaton I., Ölmez-Hancı T., Tünay O., “Electrocoagulation applications for industrial wastewaters: a critical review”, Environmental Technology Reviews, 2012, 1(1):2-45. DOI: 10.1080/21622515.2012.715390.
- [18] Kobya M., Bayramoglu M., Eyvaz M., “Techno-economical evaluation of electrocoagulation for the textile wastewater using different electrode connections”, Journal of Hazardous Materials, 2007, 148(1–2):311-318. https://doi.org/10.1016/j.jhazmat.2007.02.036.
- [19] Bingül Z., Irdemez Ş., Demircioğlu N., “Effect of controlled and uncontrolled pH on tannery wastewater treatment by the electrocoagulation process”, International Journal of Environmental Analytical Chemistry, 2021. DOI: 10.1080/03067319.2021.1925261.
- [20] Gönder Z. B., Balcıoğlu G., Vergili I., Kaya Y., “Electrochemical treatment of carwash wastewater using Fe and Al electrode: Techno-economic analysis and sludge characterization”, Journal of Environmental Management, 2017, 200:380-390. https://doi.org/10.1016/j.jenvman.2017.06.005.
- [21] Sahu O. P., Gupta V., Chaudhari P.K., Srivastava V. C., “Electrochemical treatment of actual sugar industry wastewater using aluminum electrode”, Int J Environ Sci Techno, 2015, 12:3519–3530. https://doi.org/10.1007/s13762-015-0774-5.
- [22] Kobya M., Can O. T., Bayramoglu M., “Treatment of textile wastewaters by electrocoagulation using iron and aluminum electrodes”, Journal of Hazardous Materials, 2003, 100(1–3):163-178. https://doi.org/10.1016/S0304-3894(03)00102-X.
- [23] Bener S., Bulca Ö., Palas B., Tekin G., Atalay S., Ersöz G., “Electrocoagulation process for the treatment of real textile wastewater: Effect of operative conditions on the organic carbon removal and kinetic study”, Process Safety and Environmental Protection, 2019, 129:47-54.
https://doi.org/10.1016/j.psep.2019.06.010.
- [24] Krishna B. M., Murthy U. N., Kumar B. M., Lokesh K.S., “Electrochemical pretreatment of distillery wastewater using aluminum electrode”, J Appl Electrochem, 2010, 40:663-673.
- [25] Yilmaz A. E., Boncukcuoğlu R., Kocakerim M. M., “A quantitative comparison between electrocoagulation and chemical coagulation for boron removal from boron-containing solution”, Journal Hazardous Materials, 2007 149:475–481.
- [26] Gökkuş Ö., Yıldız Y. Ş., “Application of electrocoagulation for treatment of medical waste sterilization plant wastewater and optimization of the experimental conditions”, Clean Techn. Environ. Policy, 2015, 17:1717–1725. https://doi.org/10.1007/s10098-014-0897-2