Araştırma Makalesi
BibTex RIS Kaynak Göster

Makine Öğrenmesi Algoritmaları ile Betonarme Kirişlerin Burulma Momenti Tahmini

Yıl 2022, Cilt: 9 Sayı: 2, 912 - 924, 31.05.2022
https://doi.org/10.31202/ecjse.1031950

Öz

Bu çalışmada betonarme kiriş deneylerinden elde edilen burulma dayanımı değerlerinin, deneysel çalışmaya gerek duyulmadan yapay zekâ algoritmaları ile tahmini amaçlanmıştır. Bu kapsamda yapılan kiriş deney verileri ile bir veri havuzu oluşturulmuş ve bu veriler ile makine öğrenmesi regresyon algoritmaları geliştirilmiştir. Deneysel çalışmalarda yer alan kiriş boyutları, beton dayanımı, etriye dayanımı, etriye kolları arası mesafe ve aralığı, etriye ve boyuna burulma donatısı akma dayanımı, etriye ve boyuna donatı oranı ile boyuna burulma donatısı alanı verileri algoritmalar için giriş parametreleri olarak, burulma dayanımı değeri ise çıkış (hedef) parametresi olarak seçilmiştir. Regresyon algoritması olarak Çoklu Lineer Regresyon, Destek Vektör Regresyon, Karar Ağaçları ve Rassal Orman algoritma modelleri seçilmiştir. Sonuç olarak ise betonarme kirişlerde malzeme ve kesit özelliklerinin bilinmesi ile burulma dayanımının tahmini için en iyi sonucu % 97,59 tahmin başarı oranı ile Destek Vektör Regresyon modeli vermiştir.

Kaynakça

  • [1]. Ersoy U., Canbay E., Özcebe G., (2019). Betonarme Cilt 1 Davranış ve Hesap İlkeleri, Evrim yayınları ISBN: 9789755032399.
  • [2]. Aydın A.C., Bayrak B., (2016). Kendiliğinden Yerleşen ve Normal Betonlu Betonarme Kirişlerin Burulma Davranışının Deneysel ve Teorik Olarak İncelenmesi, Sinop Uni J Nat Sci 1(1): 23- 32 (2016).
  • [3]. ACI 318, Committee A, (2008). A.C. Institute, and I.O.f. Standardization. Building code requirements for structural concrete (ACI 318-08) and commentary. American Concrete Institute.
  • [4]. EuroCode-2, EN, B., 1-2: (2004). Eurocode 2: Design of concrete structures-Part 1-2: General rules-Structural fire design. European Standards, London, 2004.
  • [5]. BS 8110 Rowe R.E., Handbook to British Standard BS 8110: 1985: Structural Use of Concrete1987: Palladian Publications.
  • [6]. TS500, (2000). TS500 Betonarme Yapıların Tasarım Ve Yapım Kuralları, 2000, Türk Standatları Enstitüsü, Ankara, Türkiye.
  • [7]. Arslan M.H., (2010). Predicting of torsional strength of RC beams by using different artificial neural network algorithms and building codes, Advances in Engineering Software 41 (2010) 946–955.
  • [8]. Cevik A., Arslan M.H., Koroglu M.A., (2010). Genetic-programming based modeling of RC beam torsional strength. KSCE J Civil Eng 2010;14(3):371–84.
  • [9]. Victor D.J., Muthukrishnan R., (1973). Effect of stirrups on ultimate torque of reinforced concrete beams. ACI J 1973;70–32:300–6.
  • [10]. McMullen A.E., Rangan B.V., (1978). Pure torsion in rectangular section-A reexamination, ACI J 1978;75(52):511–9.
  • [11]. Koutchoukali N.E., Belarbi G., (2001). Torsion of high strength reinforced concrete beams and minimum reinforcement requirement. ACI Struct J 2001;98(4):462–9.
  • [12]. Collins C.P., Mitchell D., (1980). Shear and torsion design of prestressed and nonprestressed concrete beams. PCI J 1980;25(5):32–100.
  • [13]. ACI Committee 318-95, (1995). Building code requirements for structural concrete and commentary. Detroit: American Concrete Institute; 1995.
  • [14]. Tang C.W., (2006). Using radial basis function neural networks to model torsional strength of reinforced concrete beams. Comput Concr 2006;3(5):335–55.
  • [15]. URL 1: https://veribilimcisi.com/2018/02/23/karar-agaclari-decision-trees/)
  • [16]. Vapnik V.N., (1998). Statistical learning theory, New York: John Wiley and Sons.
  • [17]. Python Programming, (1995). Van Rossum, G. & Drake Jr, F.L., 1995. Python reference manual, Centrum voor Wiskunde en Informatica Amsterdam.
  • [18]. Arslan İ., (2019), Python ile veri bilimi, Pusula yayıncılık.

Estimation of Torsional Moment of Reinforced Concrete Beams with Machine Learning Algorithms

Yıl 2022, Cilt: 9 Sayı: 2, 912 - 924, 31.05.2022
https://doi.org/10.31202/ecjse.1031950

Öz

In this study, it is aimed to estimate the torsional strength values obtained from reinforced concrete beam tests with artificial intelligence algorithms without the need for experimental work. In this context, a data pool was created with the beam test data and machine learning regression algorithms were developed with these data. The beam dimensions, concrete compressive strength, stirrup strength, distance and spacing between stirrup arms, yield strength of stirrups and longitudinal torsion reinforcement, ratio of stirrups and longitudinal reinforcement, and longitudinal torsion reinforcement area data included in the experimental studies are input parameters for the algorithms, and the torsional strength value is output (target) selected as the parameter. Multiple Linear Regression, Support Vector Regression, Decision Trees and Random Forest algorithm models were chosen as regression algorithms. As a result, the Support Vector Regression model gave the best result with a prediction success rate of 97.59 % for the estimation of the torsional strength by knowing the material and section properties of reinforced concrete beams.

Kaynakça

  • [1]. Ersoy U., Canbay E., Özcebe G., (2019). Betonarme Cilt 1 Davranış ve Hesap İlkeleri, Evrim yayınları ISBN: 9789755032399.
  • [2]. Aydın A.C., Bayrak B., (2016). Kendiliğinden Yerleşen ve Normal Betonlu Betonarme Kirişlerin Burulma Davranışının Deneysel ve Teorik Olarak İncelenmesi, Sinop Uni J Nat Sci 1(1): 23- 32 (2016).
  • [3]. ACI 318, Committee A, (2008). A.C. Institute, and I.O.f. Standardization. Building code requirements for structural concrete (ACI 318-08) and commentary. American Concrete Institute.
  • [4]. EuroCode-2, EN, B., 1-2: (2004). Eurocode 2: Design of concrete structures-Part 1-2: General rules-Structural fire design. European Standards, London, 2004.
  • [5]. BS 8110 Rowe R.E., Handbook to British Standard BS 8110: 1985: Structural Use of Concrete1987: Palladian Publications.
  • [6]. TS500, (2000). TS500 Betonarme Yapıların Tasarım Ve Yapım Kuralları, 2000, Türk Standatları Enstitüsü, Ankara, Türkiye.
  • [7]. Arslan M.H., (2010). Predicting of torsional strength of RC beams by using different artificial neural network algorithms and building codes, Advances in Engineering Software 41 (2010) 946–955.
  • [8]. Cevik A., Arslan M.H., Koroglu M.A., (2010). Genetic-programming based modeling of RC beam torsional strength. KSCE J Civil Eng 2010;14(3):371–84.
  • [9]. Victor D.J., Muthukrishnan R., (1973). Effect of stirrups on ultimate torque of reinforced concrete beams. ACI J 1973;70–32:300–6.
  • [10]. McMullen A.E., Rangan B.V., (1978). Pure torsion in rectangular section-A reexamination, ACI J 1978;75(52):511–9.
  • [11]. Koutchoukali N.E., Belarbi G., (2001). Torsion of high strength reinforced concrete beams and minimum reinforcement requirement. ACI Struct J 2001;98(4):462–9.
  • [12]. Collins C.P., Mitchell D., (1980). Shear and torsion design of prestressed and nonprestressed concrete beams. PCI J 1980;25(5):32–100.
  • [13]. ACI Committee 318-95, (1995). Building code requirements for structural concrete and commentary. Detroit: American Concrete Institute; 1995.
  • [14]. Tang C.W., (2006). Using radial basis function neural networks to model torsional strength of reinforced concrete beams. Comput Concr 2006;3(5):335–55.
  • [15]. URL 1: https://veribilimcisi.com/2018/02/23/karar-agaclari-decision-trees/)
  • [16]. Vapnik V.N., (1998). Statistical learning theory, New York: John Wiley and Sons.
  • [17]. Python Programming, (1995). Van Rossum, G. & Drake Jr, F.L., 1995. Python reference manual, Centrum voor Wiskunde en Informatica Amsterdam.
  • [18]. Arslan İ., (2019), Python ile veri bilimi, Pusula yayıncılık.
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Gamze Dogan 0000-0002-0339-8048

Yayımlanma Tarihi 31 Mayıs 2022
Gönderilme Tarihi 3 Aralık 2021
Kabul Tarihi 1 Mart 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 9 Sayı: 2

Kaynak Göster

IEEE G. Dogan, “Makine Öğrenmesi Algoritmaları ile Betonarme Kirişlerin Burulma Momenti Tahmini”, ECJSE, c. 9, sy. 2, ss. 912–924, 2022, doi: 10.31202/ecjse.1031950.