Araştırma Makalesi
BibTex RIS Kaynak Göster

Nitrojen Donör Ligantları İçeren Diklofenaklı yeni bir Kobalt-(II) Kompleksinin Sentez, Kristalografik Yapı, Spektral (FT-IR, UV) Özellikleri, Hirshfeld Yüzey Analizi ve Moleküler Kenetlenme Çalışmaları

Yıl 2022, Cilt: 9 Sayı: 2, 695 - 707, 31.05.2022
https://doi.org/10.31202/ecjse.995055

Öz

Yeni diklofenak bazlı cobalt (II) kompleksi, bis {2- [2-(2,6-dikloro anilino) fenil] asetato-κ'O, O'} bis (2-metil-1H-imidazol-κN3cobalt (II) sentezlenmiş ve FT-IR, UV spektroskopileri ve tek kristal X-ışını kırınımı ile karakterize edilmiştir. Başlık kompleksi I2/a momoklinik uzay grubunda a = 19.0546(8) Å, b = 13.7167(8) Å, c = 14.7165(7) Å, a = 90˚, b = 13.7167(8) Å ve g = 90˚ ve Z=4 ile kristalleşir. X-ışını kırınım tekniğine göre, kobalt iyonu diklofenak ve metil imidazol ligandlarına koordinedir ve başlık kompleksi τ_4^' = 0.75 ile çarpık bir tetrahedral formu benimsemektedir. Monomer, 3-boyutlu uzayda tabaka yapıları oluşturmak için C–H···π etkileşimlerinin yanı sıra moleküller arası geleneksel C–H···O and C–H···N hidrojen bağları yoluyla bağlanır. Ek olarak başlık kompleksindeki moleküller arası etkileşimler Hirshfeld yüzey analizi tekniği kullanılarak incelenmiştir. Kompleksin başlıca etkileşimleri, H···H (46%), H···Cl (21%), C···H (17.2%) ve O···H (7.6%) dır. Son olarak başlık molekülünün sırasıyla, anti-tümör ve anti-inflamatuar aktiviteye sahip olup olmadığını göstermek için iki farklı reseptör (5U9D ve 4XTA) ile moleküler kenetlenme çalışmaları yapılmıştır.

Kaynakça

  • [1]. Fan, X., Dong, J., Min, R., Chen, Y., Yi, X., Zhou, J., & Zhang, S, “Cobalt (II) complexes with thiosemicarbazone as potential antitumor agents: synthesis, crystal structures, DNA interactions, and cytotoxicity”, Journal of Coordination Chemistry, 2013, 66(24): 4268–4279.
  • [2]. Ali, H. A., Shamma, A. A., & Kamel, S, “New mixed ligand cobalt (II/III) complexes based on the drug sodium valproate and bioactive nitrogen-donor ligands. Synthesis, structure and biological properties”, Journal of Molecular Structure, 2017, 1142: 40–47.
  • [3]. Heffern, M. C., Velasco, P. T., Matosziuk, L. M., Coomes, J. L., Karras, C., Ratner, M. A., ... & Meade, T. J, “Modulation of amyloid-β aggregation by histidine-coordinating Cobalt (III) Schiff base complexes”, Chembiochem: a European journal of chemical biology, 2014, 15(11): 1584.
  • [4]. Lopez-Sandoval, H., Londono-Lemos, M. E., Garza-Velasco, R., Poblano-Meléndez, I., Granada-Macías, P., Gracia-Mora, I., & Barba-Behrens, N, “Synthesis, structure and biological activities of cobalt (II) and zinc (II) coordination compounds with 2-benzimidazole derivatives” , Journal of Inorganic Biochemistry, 2008, 102(5-6): 1267–1276.
  • [5]. Ott, I., Abraham, A., Schumacher, P., Shorafa, H., Gastl, G., Gust, R., & Kircher, B, “Synergistic and additive antiproliferative effects on human leukemia cell lines induced by combining acetylenehexacarbonyldicobalt complexes with the tyrosine kinase inhibitor imatinib” , Journal of inorganic biochemistry, 2006, 100(11): 1903–1906.
  • [6]. Miodragović, D. U., Bogdanović, G. A., Miodragović, Z. M., Radulović, M. Đ., Novaković, S. B., Kaluđerović, G. N., & Kozłowski, H, “Interesting coordination abilities of antiulcer drug famotidine and antimicrobial activity of drug and its cobalt (III) complex” , Journal of inorganic biochemistry, 2006, 100(9): 1568–1574.
  • [7]. Nomiya, K., Yoshizawa, A., Tsukagoshi, K., Kasuga, N. C., Hirakawa, S., & Watanabe, J, “ Synthesis and structural characterization of silver (I), aluminium (III) and cobalt (II) complexes with 4-isopropyltropolone (hinokitiol) showing noteworthy biological activities. Action of silver (I)-oxygen bonding complexes on the antimicrobial activities” , Journal of inorganic biochemistry, 2004, 98(1): 46–60.
  • [8]. Lv, J., Liu, T., Cai, S., Wang, X., Liu, L., & Wang, Y, “Synthesis, structure and biological activity of cobalt (II) and copper (II) complexes of valine-derived schiff bases”, Journal of Inorganic Biochemistry, 2006, 100(11): 1888–1896.
  • [9]. Böttcher, A., Takeuchi, T., Hardcastle, K. I., Meade, T. J., Gray, H. B., Cwikel, D., ... & Dori, Z, “ Spectroscopy and electrochemistry of cobalt (III) Schiff base complexes”, Inorganic Chemistry, 1997, 36(12): 2498–2504.
  • [10]. Dimiza, F., Papadopoulos, A. N., Tangoulis, V., Psycharis, V., Raptopoulou, C. P., Kessissoglou, D. P., & Psomas, G, “ Biological evaluation of non-steroidal anti-inflammatory drugs-cobalt (II) complexes”, Dalton transactions, 2010, 39(19): 4517–4528.
  • [11]. Ashouri, F., Faraji, A. R., Molaeian, S., Fall, M. A., & Butcher, R. J, “The novel cobalt and manganese polymeric complex with the non-steroidal anti-inflammatory drug diclofenac: Synthesis, characterization and antibacterial studies”, Journal of Molecular Structure, 2020, 1204: 127483.
  • [12]. Aguilar-Lira, G. Y., Álvarez-Romero, G. A., Zamora-Suárez, A., Palomar-Pardavé, M., Rojas-Hernández, A., Rodríguez-Ávila, J. A., & Páez-Hernández, M. E, “New insights on diclofenac electrochemistry using graphite as working electrode” , Journal of Electroanalytical Chemistry, 2017, 794: 182–188.
  • [13]. Moreno, M. M., Garidel, P., Suwalsky, M., Howe, J., & Brandenburg, K, “The membrane-activity of Ibuprofen, Diclofenac, and Naproxen: A physico-chemical study with lecithin phospholipids”, Biochimica et Biophysica Acta (BBA)-Biomembranes, 2009, 1788(6): 1296–1303.
  • [14]. Yang, X., Wang, F., & Hu, S, “Enhanced oxidation of diclofenac sodium at a nano-structured electrochemical sensing film constructed by multi-wall carbon nanotubes–surfactant composite”, Materials Science and Engineering: C, 2008, 28(1): 188–194.
  • [15]. Khoobi, A., Soltani, N., & Aghaei, M, “Computational design and multivariate statistical analysis for electrochemical sensing platform of iron oxide nanoparticles in sensitive detection of anti-inflammatory drug diclofenac in biological fluids”, Journal of Alloys and Compounds, 2020, 831: 154715.
  • [16]. Tong, S. L., Tian, Z. Y., Wu, Y. H., Yan, Y., Hu, S., & Yu, J, “ Crystal assembly based on 3, 5-bis (2′-benzimidazole) pyridine and its complexes” , Solid state sciences, 2013, 17: 6–13.
  • [17]. Zhan, S. J., Sun, Y., Li, S. P., Tang, G. M., Wang, Y. T., & Cui, Y. Z, “ Syntheses, crystal structures and luminescent properties of three metal coordination polymers based on aromatic carboxylic acids and 2-(pyridine-4-yl)-(1H)-benzoimidazole”, Polyhedron, 2017, 121: 252–263.
  • [18]. Uzun, S., Demircioğlu, Z., Taşdoğan, M., Ağar, E., “Quantum chemical and X-ray diffraction studies of (E)-3-(((3,4-dimethoxybenzyl)imino)methyl)benzene-1,2-diol”, Journal of Molecular Structure, 2020, 1206: 127749.
  • [19]. Sheldrick, G. M, “SHELXS-97. Program for the Solution of Crystal Structures”, 1997, Univ. of Gottingen.
  • [20]. Sheldrick, 3. 3. G, “SHELXL-97. Program for crystal-structure refinement”, 1997.
  • [21]. Farrugia, L. J, “ WinGX (Version 1.64. 05)” , Journal of Applied. Crystallography ,1999, 32: 837–838.
  • [22]. Farrugia, L. J, “ORTEP-3 for Windows-a version of ORTEP-III with a Graphical User Interface (GUI)”, Journal of Applied. Crystallography, 1997, 30: 565.
  • [23]. Yang, L., Powell, D. R., & Houser, R. P, “Structural variation in copper (I) complexes with pyridylmethylamide ligands: structural analysis with a new four-coordinate geometry index, τ 4”, Dalton Transactions, 2007, 9: 955–964.
  • [24]. Okuniewski, A., Rosiak, D., Chojnacki, J., & Becker, B, “Coordination polymers and molecular structures among complexes of mercury (II) halides with selected 1-benzoylthioureas” , Polyhedron, 2015, 90: 47–57.
  • [25]. Huang, X. C., Xu, R., Chen, Y. Z., Zhang, Y. Q., & Shao, D, “Two Four‐Coordinate and Seven‐Coordinate CoII Complexes Based on the Bidentate Ligand 1, 8‐Naphthyridine Showing Slow Magnetic Relaxation Behavior”, Chemistry–An Asian Journal, 2020, 15(2): 279–286.
  • [26]. Hamamci, S., Yilmaz, V. T., & Harrison, W. T, “Synthesis, spectra, thermal analysis and crystal structure of Trans-Bis (2-Pyridinepropanol) Bis (Saccharinato) Cobalt (II)” , Journal of Coordination Chemistry, 2003, 56(12): 1033–1039.
  • [27]. Perontsis, S., Dimitriou, A., Fotiadou, P., Hatzidimitriou, A. G., Papadopoulos, A. N., & Psomas, G, “ Cobalt (II) complexes with the non-steroidal anti-inflammatory drug diclofenac and nitrogen-donor ligands”, Journal of inorganic biochemistry, 2019, 196: 110688.
  • [28]. Ramalingam, A., Kansız, S., Dege, N., & Sambandam, S, “Synthesis, Crystal Structure, DFT Calculations and Hirshfeld Surface Analysis of 3-Chloro-2, 6-Bis (4-Chlorophenyl)-3-Methylpiperidin-4-One”, Journal of Chemical Crystallography, 2021, 51(2): 273–287.
  • [29]. Ilmi, R., Kansız, S., Al-Rasbi, N. K., Dege, N., Raithby, P. R., & Khan, M. S, “Towards white light emission from a hybrid thin film of a self-assembled ternary samarium (III) complex” , New Journal of Chemistry, 2020, 44(15): 5673–5683.
  • [30]. Albayati, M. R., Kansız, S., Lgaz, H., Kaya, S., Dege, N., Ali, I. H., ... & Chung, I. M, “Synthesis, experimental and theoretical characterization of (E)-2-((2, 3-dimethylphenyl) amino)-N’-(furan-2-ylmethylene) benzohydrazide”, Journal of Molecular Structure, 2020, 1219: 128518.
  • [31]. Kansız, S., Qadir, A. M., Dege, N., & Faizi, S. H, “ Two new copper (II) carboxylate complexes based on N, N, N', N'-tetramethylethyleneamine: Synthesis, crystal structures, spectral properties, dft studies and hirshfeld surface analysis”, Journal of Molecular Structure, 2021, 1230: 129916.
  • [32]. McKinnon, J. J., Spackman, M. A., & Mitchell, A. S, “ Novel tools for visualizing and exploring intermolecular interactions in molecular crystals”, Acta Crystallographica Section B: Structural Science, 2004, 60(6): 627–668.
  • [33]. Wood, P. A., McKinnon, J. J., Parsons, S., Pidcock, E., & Spackman, M. A, “Analysis of the compression of molecular crystal structures using Hirshfeld surfaces” ,CrystEngComm, 2008, 10(4): 368–376.
  • [34]. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D., & Spackman, M. A, CrystalExplorer17, 2017.
  • [35]. Hirshfeld, F. L, “Bonded-atom fragments for describing molecular charge densities”, Theoretica chimica acta, 1997,44(2): 129–138.
  • [36]. Spackman, M. A., & Jayatilaka, D, ” Hirshfeld surface analysis”, CrystEngComm, 2009, 11(1): 19–32.
  • [37]. Sağlam, E. G., Dal, H., Mougang-Soumé, B., & Hökelek, T, “ Syntheses and structural characterization of new trans-bis-[n-butyl-(p-methoxyphenyl) dithiophosphinato] nickel (II), the pyridine derivative thereof, and bis-{bis-[n-butyl-(p-methoxyphenyl) dithiophosphinato] cobalt (II)} complexes”, Journal of Molecular Structure, 2020, 1202: 127222.
  • [38]. Hamamci Alisir, S., Dege, N., & Tapramaz, R, “Synthesis, crystal structures and characterizations of three new copper (II) complexes including anti-inflammatory diclofenac”, Acta Crystallographica Section C: Structural Chemistry, 2019, 75(4): 388–397.
  • [39]. Nakamoto, K, “Infrared and Raman spectra of inorganic and coordination compounds”, Wiley Online Library, 1986.
  • [40]. Sanner, M. F, “Python: a programming language for software integration and development”, J Mol Graph Model, 1999, 17(1): 57–61.
  • [41]. Dimić, D., Milanović, Ž., Jovanović, G., Sretenović, D., Milenković, D., Marković, Z., & Marković, J. D, “Comparative antiradical activity and molecular Docking/Dynamics analysis of octopamine and norepinephrine: the role of OH groups”, Computational biology and chemistry, 2020, 84: 107170.
  • [42]. BIOvIA, D. S., & Dsme, R, “Dassault Systèmes BIOVIA”, Discovery Studio Modeling Environment, 2017.
  • [43]. DeLano, W. L., & Bromberg, S, “PyMOL user’s guide”, DeLano Scientific LLC, 629, 2004.

Synthesis, Crystallographic Structure, Spectral (FT-IR, UV) Properties, Hirshfeld Surface Analysis and Molecular Docking Studies of a New Cobalt-(II) Complex with Diclofenac Including Nitrogen Donor Ligands

Yıl 2022, Cilt: 9 Sayı: 2, 695 - 707, 31.05.2022
https://doi.org/10.31202/ecjse.995055

Öz

The new diclofenac-based cobalt (II) complex, namely bis {2- [2-(2,6-dichloro anilino) phenyl] acetato-κ'O, O'} bis (2-methyl-1H-imidazole-κN3cobalt (II) has been synthesized and characterized by FT–IR, UV spectroscopies and single crystal X-ray diffraction techniques. The title complex crystallizes in the monoclinic space group I2/a with a = 19.0546(8) Å, b = 13.7167(8) Å, c = 14.7165(7) Å, a = 90˚, b = 13.7167(8) Å and g = 90˚ and Z=4. According to the X-ray diffraction technique results, the cobalt ion is coordinated to diclofenac and methyl imidazole ligands and the title complex adopts a distorted tetrahedral geometry with τ_4^' = 0.75. The monomer is linked by conventional C–H···O and C–H···N intermolecular hydrogen bonds as well as C–H···π interactions to form sheet structures in 3D space. Additionally, the intermolecular interactions in the title complex have examined using Hirshfeld surface analysis technique. The major interactions of the complex are H···H (46%), H···Cl (21%), C···H (17.2%) and O···H (7.6%). Finally, molecular docking studies with different two receptors (5U9D and 4XTA) have been performed to show whether the title molecule has anti-tumor and anti-inflammatory activity, respectively.

Kaynakça

  • [1]. Fan, X., Dong, J., Min, R., Chen, Y., Yi, X., Zhou, J., & Zhang, S, “Cobalt (II) complexes with thiosemicarbazone as potential antitumor agents: synthesis, crystal structures, DNA interactions, and cytotoxicity”, Journal of Coordination Chemistry, 2013, 66(24): 4268–4279.
  • [2]. Ali, H. A., Shamma, A. A., & Kamel, S, “New mixed ligand cobalt (II/III) complexes based on the drug sodium valproate and bioactive nitrogen-donor ligands. Synthesis, structure and biological properties”, Journal of Molecular Structure, 2017, 1142: 40–47.
  • [3]. Heffern, M. C., Velasco, P. T., Matosziuk, L. M., Coomes, J. L., Karras, C., Ratner, M. A., ... & Meade, T. J, “Modulation of amyloid-β aggregation by histidine-coordinating Cobalt (III) Schiff base complexes”, Chembiochem: a European journal of chemical biology, 2014, 15(11): 1584.
  • [4]. Lopez-Sandoval, H., Londono-Lemos, M. E., Garza-Velasco, R., Poblano-Meléndez, I., Granada-Macías, P., Gracia-Mora, I., & Barba-Behrens, N, “Synthesis, structure and biological activities of cobalt (II) and zinc (II) coordination compounds with 2-benzimidazole derivatives” , Journal of Inorganic Biochemistry, 2008, 102(5-6): 1267–1276.
  • [5]. Ott, I., Abraham, A., Schumacher, P., Shorafa, H., Gastl, G., Gust, R., & Kircher, B, “Synergistic and additive antiproliferative effects on human leukemia cell lines induced by combining acetylenehexacarbonyldicobalt complexes with the tyrosine kinase inhibitor imatinib” , Journal of inorganic biochemistry, 2006, 100(11): 1903–1906.
  • [6]. Miodragović, D. U., Bogdanović, G. A., Miodragović, Z. M., Radulović, M. Đ., Novaković, S. B., Kaluđerović, G. N., & Kozłowski, H, “Interesting coordination abilities of antiulcer drug famotidine and antimicrobial activity of drug and its cobalt (III) complex” , Journal of inorganic biochemistry, 2006, 100(9): 1568–1574.
  • [7]. Nomiya, K., Yoshizawa, A., Tsukagoshi, K., Kasuga, N. C., Hirakawa, S., & Watanabe, J, “ Synthesis and structural characterization of silver (I), aluminium (III) and cobalt (II) complexes with 4-isopropyltropolone (hinokitiol) showing noteworthy biological activities. Action of silver (I)-oxygen bonding complexes on the antimicrobial activities” , Journal of inorganic biochemistry, 2004, 98(1): 46–60.
  • [8]. Lv, J., Liu, T., Cai, S., Wang, X., Liu, L., & Wang, Y, “Synthesis, structure and biological activity of cobalt (II) and copper (II) complexes of valine-derived schiff bases”, Journal of Inorganic Biochemistry, 2006, 100(11): 1888–1896.
  • [9]. Böttcher, A., Takeuchi, T., Hardcastle, K. I., Meade, T. J., Gray, H. B., Cwikel, D., ... & Dori, Z, “ Spectroscopy and electrochemistry of cobalt (III) Schiff base complexes”, Inorganic Chemistry, 1997, 36(12): 2498–2504.
  • [10]. Dimiza, F., Papadopoulos, A. N., Tangoulis, V., Psycharis, V., Raptopoulou, C. P., Kessissoglou, D. P., & Psomas, G, “ Biological evaluation of non-steroidal anti-inflammatory drugs-cobalt (II) complexes”, Dalton transactions, 2010, 39(19): 4517–4528.
  • [11]. Ashouri, F., Faraji, A. R., Molaeian, S., Fall, M. A., & Butcher, R. J, “The novel cobalt and manganese polymeric complex with the non-steroidal anti-inflammatory drug diclofenac: Synthesis, characterization and antibacterial studies”, Journal of Molecular Structure, 2020, 1204: 127483.
  • [12]. Aguilar-Lira, G. Y., Álvarez-Romero, G. A., Zamora-Suárez, A., Palomar-Pardavé, M., Rojas-Hernández, A., Rodríguez-Ávila, J. A., & Páez-Hernández, M. E, “New insights on diclofenac electrochemistry using graphite as working electrode” , Journal of Electroanalytical Chemistry, 2017, 794: 182–188.
  • [13]. Moreno, M. M., Garidel, P., Suwalsky, M., Howe, J., & Brandenburg, K, “The membrane-activity of Ibuprofen, Diclofenac, and Naproxen: A physico-chemical study with lecithin phospholipids”, Biochimica et Biophysica Acta (BBA)-Biomembranes, 2009, 1788(6): 1296–1303.
  • [14]. Yang, X., Wang, F., & Hu, S, “Enhanced oxidation of diclofenac sodium at a nano-structured electrochemical sensing film constructed by multi-wall carbon nanotubes–surfactant composite”, Materials Science and Engineering: C, 2008, 28(1): 188–194.
  • [15]. Khoobi, A., Soltani, N., & Aghaei, M, “Computational design and multivariate statistical analysis for electrochemical sensing platform of iron oxide nanoparticles in sensitive detection of anti-inflammatory drug diclofenac in biological fluids”, Journal of Alloys and Compounds, 2020, 831: 154715.
  • [16]. Tong, S. L., Tian, Z. Y., Wu, Y. H., Yan, Y., Hu, S., & Yu, J, “ Crystal assembly based on 3, 5-bis (2′-benzimidazole) pyridine and its complexes” , Solid state sciences, 2013, 17: 6–13.
  • [17]. Zhan, S. J., Sun, Y., Li, S. P., Tang, G. M., Wang, Y. T., & Cui, Y. Z, “ Syntheses, crystal structures and luminescent properties of three metal coordination polymers based on aromatic carboxylic acids and 2-(pyridine-4-yl)-(1H)-benzoimidazole”, Polyhedron, 2017, 121: 252–263.
  • [18]. Uzun, S., Demircioğlu, Z., Taşdoğan, M., Ağar, E., “Quantum chemical and X-ray diffraction studies of (E)-3-(((3,4-dimethoxybenzyl)imino)methyl)benzene-1,2-diol”, Journal of Molecular Structure, 2020, 1206: 127749.
  • [19]. Sheldrick, G. M, “SHELXS-97. Program for the Solution of Crystal Structures”, 1997, Univ. of Gottingen.
  • [20]. Sheldrick, 3. 3. G, “SHELXL-97. Program for crystal-structure refinement”, 1997.
  • [21]. Farrugia, L. J, “ WinGX (Version 1.64. 05)” , Journal of Applied. Crystallography ,1999, 32: 837–838.
  • [22]. Farrugia, L. J, “ORTEP-3 for Windows-a version of ORTEP-III with a Graphical User Interface (GUI)”, Journal of Applied. Crystallography, 1997, 30: 565.
  • [23]. Yang, L., Powell, D. R., & Houser, R. P, “Structural variation in copper (I) complexes with pyridylmethylamide ligands: structural analysis with a new four-coordinate geometry index, τ 4”, Dalton Transactions, 2007, 9: 955–964.
  • [24]. Okuniewski, A., Rosiak, D., Chojnacki, J., & Becker, B, “Coordination polymers and molecular structures among complexes of mercury (II) halides with selected 1-benzoylthioureas” , Polyhedron, 2015, 90: 47–57.
  • [25]. Huang, X. C., Xu, R., Chen, Y. Z., Zhang, Y. Q., & Shao, D, “Two Four‐Coordinate and Seven‐Coordinate CoII Complexes Based on the Bidentate Ligand 1, 8‐Naphthyridine Showing Slow Magnetic Relaxation Behavior”, Chemistry–An Asian Journal, 2020, 15(2): 279–286.
  • [26]. Hamamci, S., Yilmaz, V. T., & Harrison, W. T, “Synthesis, spectra, thermal analysis and crystal structure of Trans-Bis (2-Pyridinepropanol) Bis (Saccharinato) Cobalt (II)” , Journal of Coordination Chemistry, 2003, 56(12): 1033–1039.
  • [27]. Perontsis, S., Dimitriou, A., Fotiadou, P., Hatzidimitriou, A. G., Papadopoulos, A. N., & Psomas, G, “ Cobalt (II) complexes with the non-steroidal anti-inflammatory drug diclofenac and nitrogen-donor ligands”, Journal of inorganic biochemistry, 2019, 196: 110688.
  • [28]. Ramalingam, A., Kansız, S., Dege, N., & Sambandam, S, “Synthesis, Crystal Structure, DFT Calculations and Hirshfeld Surface Analysis of 3-Chloro-2, 6-Bis (4-Chlorophenyl)-3-Methylpiperidin-4-One”, Journal of Chemical Crystallography, 2021, 51(2): 273–287.
  • [29]. Ilmi, R., Kansız, S., Al-Rasbi, N. K., Dege, N., Raithby, P. R., & Khan, M. S, “Towards white light emission from a hybrid thin film of a self-assembled ternary samarium (III) complex” , New Journal of Chemistry, 2020, 44(15): 5673–5683.
  • [30]. Albayati, M. R., Kansız, S., Lgaz, H., Kaya, S., Dege, N., Ali, I. H., ... & Chung, I. M, “Synthesis, experimental and theoretical characterization of (E)-2-((2, 3-dimethylphenyl) amino)-N’-(furan-2-ylmethylene) benzohydrazide”, Journal of Molecular Structure, 2020, 1219: 128518.
  • [31]. Kansız, S., Qadir, A. M., Dege, N., & Faizi, S. H, “ Two new copper (II) carboxylate complexes based on N, N, N', N'-tetramethylethyleneamine: Synthesis, crystal structures, spectral properties, dft studies and hirshfeld surface analysis”, Journal of Molecular Structure, 2021, 1230: 129916.
  • [32]. McKinnon, J. J., Spackman, M. A., & Mitchell, A. S, “ Novel tools for visualizing and exploring intermolecular interactions in molecular crystals”, Acta Crystallographica Section B: Structural Science, 2004, 60(6): 627–668.
  • [33]. Wood, P. A., McKinnon, J. J., Parsons, S., Pidcock, E., & Spackman, M. A, “Analysis of the compression of molecular crystal structures using Hirshfeld surfaces” ,CrystEngComm, 2008, 10(4): 368–376.
  • [34]. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D., & Spackman, M. A, CrystalExplorer17, 2017.
  • [35]. Hirshfeld, F. L, “Bonded-atom fragments for describing molecular charge densities”, Theoretica chimica acta, 1997,44(2): 129–138.
  • [36]. Spackman, M. A., & Jayatilaka, D, ” Hirshfeld surface analysis”, CrystEngComm, 2009, 11(1): 19–32.
  • [37]. Sağlam, E. G., Dal, H., Mougang-Soumé, B., & Hökelek, T, “ Syntheses and structural characterization of new trans-bis-[n-butyl-(p-methoxyphenyl) dithiophosphinato] nickel (II), the pyridine derivative thereof, and bis-{bis-[n-butyl-(p-methoxyphenyl) dithiophosphinato] cobalt (II)} complexes”, Journal of Molecular Structure, 2020, 1202: 127222.
  • [38]. Hamamci Alisir, S., Dege, N., & Tapramaz, R, “Synthesis, crystal structures and characterizations of three new copper (II) complexes including anti-inflammatory diclofenac”, Acta Crystallographica Section C: Structural Chemistry, 2019, 75(4): 388–397.
  • [39]. Nakamoto, K, “Infrared and Raman spectra of inorganic and coordination compounds”, Wiley Online Library, 1986.
  • [40]. Sanner, M. F, “Python: a programming language for software integration and development”, J Mol Graph Model, 1999, 17(1): 57–61.
  • [41]. Dimić, D., Milanović, Ž., Jovanović, G., Sretenović, D., Milenković, D., Marković, Z., & Marković, J. D, “Comparative antiradical activity and molecular Docking/Dynamics analysis of octopamine and norepinephrine: the role of OH groups”, Computational biology and chemistry, 2020, 84: 107170.
  • [42]. BIOvIA, D. S., & Dsme, R, “Dassault Systèmes BIOVIA”, Discovery Studio Modeling Environment, 2017.
  • [43]. DeLano, W. L., & Bromberg, S, “PyMOL user’s guide”, DeLano Scientific LLC, 629, 2004.
Toplam 43 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Serap Uzun 0000-0002-2982-8376

Yayımlanma Tarihi 31 Mayıs 2022
Gönderilme Tarihi 14 Eylül 2021
Kabul Tarihi 28 Ekim 2021
Yayımlandığı Sayı Yıl 2022 Cilt: 9 Sayı: 2

Kaynak Göster

IEEE S. Uzun, “Synthesis, Crystallographic Structure, Spectral (FT-IR, UV) Properties, Hirshfeld Surface Analysis and Molecular Docking Studies of a New Cobalt-(II) Complex with Diclofenac Including Nitrogen Donor Ligands”, El-Cezeri Journal of Science and Engineering, c. 9, sy. 2, ss. 695–707, 2022, doi: 10.31202/ecjse.995055.
Creative Commons License El-Cezeri is licensed to the public under a Creative Commons Attribution 4.0 license.
88x31.png