Araştırma Makalesi
BibTex RIS Kaynak Göster

Avrupa Ülkererinin Haberleşme Sektöründeki Yatırımlarının Matematiksel Modellenmesi

Yıl 2022, Cilt: 9 Sayı: 3, 1028 - 1037, 30.09.2022
https://doi.org/10.31202/ecjse.1053776

Öz

Bu çalışma, ülkelerin telekomünikasyon yatırımlarının miktarlarını araştırmakta ve verileri matematiksel olarak modellemek için uygun bir yöntem aramaktadır. Çalışmada kesirli kalkülüs kullanılarak model 1 ve model 2 olarak adlandırılan iki yöntem önerilmiştir. Fransa, Almanya, İtalya, İspanya, Türkiye ve OECD toplamından elde edilen telekomünikasyon yatırımlarının yıllık verileri kullanılarak geleneksel polinom modeli ile 1 ve 2 modelleri arasında bir karşılaştırma yapılmıştır. Önerilen yöntemler, geleneksel polinom modelinden daha iyi performans gösterdiği gözlenmiştir.

Proje Numarası

ITUVF20180901P11

Kaynakça

  • [1]. Aytun C., Akın C. S., and Okyay U., Relationship between telecommunication investments and foreign direct investments in developing and developed countries, Ege Acad. Rev., 2015, 15(2), 207–216.
  • [2]. Beil R. O., Ford G. S., and Jackson J. D., On the relationship between telecommunications investment and economic growth in the United States, Int. Econ. J., 2005, 19(1), 3–9.
  • [3]. Kotakorpi K., Access price regulation, investment and entry in telecommunications, Int. J. Ind. Organ., 2006, 24(5), 1013–1020.
  • [4]. Önal N. Ö., Karaçuha K., Erdinç G. H., Karaçuha B. B., and Karaçuha E., A mathematical approach with fractional calculus for the modelling of children’s physical development, Comput. Math. Methods Med., 2019, 2019.
  • [5]. Machado J. T., Kiryakova V., and Mainardi F., Recent history of fractional calculus, Commun. nonlinear Sci. Numer. Simul., 2011, 16(3), 1140–1153.
  • [6]. Key ict indicators, OECD. [Online]. Available: https://www.oecd.org/digital/broadband/oecdkeyictindicators.htm. [Accessed: 15-Sep-2021].
  • [7]. Doh J. P. and Teegen H. J., Private telecommunications investment in emerging economies: Comparing the Latin American and Asian experience, Manag. Res. J. Iberoam. Acad. Manag., 2003.
  • [8]. Royston P. and Altman D. G., Regression using fractional polynomials of continuous covariates: parsimonious parametric modelling, J. R. Stat. Soc. Ser. C Applied Stat., 1994, 43(3), 429–453.
  • [9]. Podlubny I., Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Elsevier, 1998.
  • [10]. Loverro A., Fractional calculus: history, definitions and applications for the engineer, Rapp. Tech. Univeristy Notre Dame Dep. Aerosp. Mech. Eng., 2004, 1–28,.
  • [11]. Chang H., Koski H., and Majumdar S. K., Regulation and investment behaviour in the telecommunications sector: Policies and patterns in US and Europe, Telecomm. Policy, 2003, 27(10–11), 677–699.
  • [12]. Henisz W. J. and Zelner B. A., The institutional environment for telecommunications investment, J. Econ. Manag. Strateg., 2001, 10(1), 123–147.
  • [13]. Madden G. and Savage S. J., CEE telecommunications investment and economic growth, Inf. Econ. Policy, 1998, 10(2), 173–195.
  • [14]. Roller L. H. and Waverman L., Telecommunications infrastructure and economic development: A simultaneous approach, Am. Econ. Rev., 2001, 91(4), 909–923.
  • [15]. Karaçuha K., Tabatadze V., and Veliev E. I., Plane wave diffraction by strip with an integral boundary condition, Turkish J. Electr. Eng. Comput. Sci., 2020, 28(3), 1776–1790.
  • [16]. Karaçuha E. et al., Modeling and Prediction of the Covid-19 Cases With Deep Assessment Methodology and Fractional Calculus, IEEE Access, 2020, 8, 164012–164034.
  • [17]. E. Karaçuha, V. Tabatadze, K. Karaçuha, N. Ö. Önal, and E. Ergün, Deep Assessment Methodology Using Fractional Calculus on Mathematical Modeling and Prediction of Gross Domestic Product per Capita of Countries, Mathematics, 2020, 8(4), 633.
  • [18]. Önal, N. Ö., Karacuha, K., and Karacuha, E., A Comparison of Fractional and Polynomial Models: Modelling on Number of Subscribers in the Turkish Mobile Telecommunications Market, Int. J. Appl. Phys. Math., 2019, 10.
  • [19]. Önal, N. Ö., Karacuha, K., & Karacuha, E., Modelling on Economic Growth and Telecommunication Sector of Turkey Using a Fractional Approach Including Error Minimizing, in 3rd Asia-Pacific Conference on Applied Mathematics and Statistics (AMS 2020), Feb. 2020.

Mathematical Modeling of European Countries’ Telecommunication Investments

Yıl 2022, Cilt: 9 Sayı: 3, 1028 - 1037, 30.09.2022
https://doi.org/10.31202/ecjse.1053776

Öz

This study investigates the amounts of countries’ telecommunication investments and seeks a decent method to mathematically model the data. Using fractional calculus, two methods are proposed which are called model 1 and model 2 in the study. A comparison is performed between the conventional polynomial model and models 1 and 2 using the yearly data of telecommunication investments from France, Germany, Italy, Spain, Turkey, and the OECD total. The proposed methods outperform the conventional polynomial model.

Destekleyen Kurum

ITU Vodafone Future Lab

Proje Numarası

ITUVF20180901P11

Kaynakça

  • [1]. Aytun C., Akın C. S., and Okyay U., Relationship between telecommunication investments and foreign direct investments in developing and developed countries, Ege Acad. Rev., 2015, 15(2), 207–216.
  • [2]. Beil R. O., Ford G. S., and Jackson J. D., On the relationship between telecommunications investment and economic growth in the United States, Int. Econ. J., 2005, 19(1), 3–9.
  • [3]. Kotakorpi K., Access price regulation, investment and entry in telecommunications, Int. J. Ind. Organ., 2006, 24(5), 1013–1020.
  • [4]. Önal N. Ö., Karaçuha K., Erdinç G. H., Karaçuha B. B., and Karaçuha E., A mathematical approach with fractional calculus for the modelling of children’s physical development, Comput. Math. Methods Med., 2019, 2019.
  • [5]. Machado J. T., Kiryakova V., and Mainardi F., Recent history of fractional calculus, Commun. nonlinear Sci. Numer. Simul., 2011, 16(3), 1140–1153.
  • [6]. Key ict indicators, OECD. [Online]. Available: https://www.oecd.org/digital/broadband/oecdkeyictindicators.htm. [Accessed: 15-Sep-2021].
  • [7]. Doh J. P. and Teegen H. J., Private telecommunications investment in emerging economies: Comparing the Latin American and Asian experience, Manag. Res. J. Iberoam. Acad. Manag., 2003.
  • [8]. Royston P. and Altman D. G., Regression using fractional polynomials of continuous covariates: parsimonious parametric modelling, J. R. Stat. Soc. Ser. C Applied Stat., 1994, 43(3), 429–453.
  • [9]. Podlubny I., Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Elsevier, 1998.
  • [10]. Loverro A., Fractional calculus: history, definitions and applications for the engineer, Rapp. Tech. Univeristy Notre Dame Dep. Aerosp. Mech. Eng., 2004, 1–28,.
  • [11]. Chang H., Koski H., and Majumdar S. K., Regulation and investment behaviour in the telecommunications sector: Policies and patterns in US and Europe, Telecomm. Policy, 2003, 27(10–11), 677–699.
  • [12]. Henisz W. J. and Zelner B. A., The institutional environment for telecommunications investment, J. Econ. Manag. Strateg., 2001, 10(1), 123–147.
  • [13]. Madden G. and Savage S. J., CEE telecommunications investment and economic growth, Inf. Econ. Policy, 1998, 10(2), 173–195.
  • [14]. Roller L. H. and Waverman L., Telecommunications infrastructure and economic development: A simultaneous approach, Am. Econ. Rev., 2001, 91(4), 909–923.
  • [15]. Karaçuha K., Tabatadze V., and Veliev E. I., Plane wave diffraction by strip with an integral boundary condition, Turkish J. Electr. Eng. Comput. Sci., 2020, 28(3), 1776–1790.
  • [16]. Karaçuha E. et al., Modeling and Prediction of the Covid-19 Cases With Deep Assessment Methodology and Fractional Calculus, IEEE Access, 2020, 8, 164012–164034.
  • [17]. E. Karaçuha, V. Tabatadze, K. Karaçuha, N. Ö. Önal, and E. Ergün, Deep Assessment Methodology Using Fractional Calculus on Mathematical Modeling and Prediction of Gross Domestic Product per Capita of Countries, Mathematics, 2020, 8(4), 633.
  • [18]. Önal, N. Ö., Karacuha, K., and Karacuha, E., A Comparison of Fractional and Polynomial Models: Modelling on Number of Subscribers in the Turkish Mobile Telecommunications Market, Int. J. Appl. Phys. Math., 2019, 10.
  • [19]. Önal, N. Ö., Karacuha, K., & Karacuha, E., Modelling on Economic Growth and Telecommunication Sector of Turkey Using a Fractional Approach Including Error Minimizing, in 3rd Asia-Pacific Conference on Applied Mathematics and Statistics (AMS 2020), Feb. 2020.
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Kamil Karacuha 0000-0002-0609-5085

Semih Aslan Sağlamol 0000-0002-3608-1143

Esra Ergün 0000-0001-5000-8543

Nisa Özge Önal Tuğrul 0000-0002-6229-7132

Kevser Şimşek 0000-0003-0399-5659

Ertugrul Karacuha 0000-0002-7555-8952

Proje Numarası ITUVF20180901P11
Yayımlanma Tarihi 30 Eylül 2022
Gönderilme Tarihi 5 Ocak 2022
Kabul Tarihi 8 Şubat 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 9 Sayı: 3

Kaynak Göster

IEEE K. Karacuha, S. A. Sağlamol, E. Ergün, N. Ö. Önal Tuğrul, K. Şimşek, ve E. Karacuha, “Mathematical Modeling of European Countries’ Telecommunication Investments”, ECJSE, c. 9, sy. 3, ss. 1028–1037, 2022, doi: 10.31202/ecjse.1053776.