Bu çalışmada 2021 yılına ait bir yıllık periyodu içeren son, hızlı ve ultra hızlı yörünge (sp3) ve saat dosyalarının GPS, GLONASS, Galileo, Beidou-2, BeiDou-3 ve QZSS uydu sayısı doluluk analizleri ücretsiz yayınlanan bütün analiz merkezleri için gerçekleştirilmiştir. Ayrıca yörünge dosyasında mevcut olmayan uydu saat hatalarının oranı da bütün analiz merkezleri için hesaplanmıştır. Yapılan analizler sonucunda, GPS ve GLONASS uydu sayılarının analiz merkezleri arasında önemli oranda değişmediği, Galileo ve BeiDou uydu sayılarının ise analiz merkezleri arasında önemli değişiklikler gösterdiği görülmüştür. En az Galileo uydu sayısı son, hızlı ve ultra-hızlı yörünge ürünleri için sırası ile CNES (son), GFZ (hızlı) ve GFZ (ultra) analiz merkezlerinden elde edilmiştir. BeiDou-3 (MEO) ve QZSS uyduları için en az uydu sayısı son yörünge dosyaları içinden CODE analiz merkezi için hesaplanmıştır.
[1]. Bulbul, S., Bilgen, B., & Inal, C. (2021). The performance assessment of Precise Point Positioning (PPP) under various observation conditions. Measurement, 171, 108780.
[2]. Cao, X., et al., 2021a. Satellite availability and positioning performance of uncombined precise point positioning using BeiDou-2 and BeiDou-3 multi-frequency signals. Advances in space research, 67(4), 1303–1316.
[3]. Cohenour, C., & van Graas, F. (2011). GPS orbit and clock error distributions. NAVIGATION, Journal of the Institute of Navigation, 58(1), 17-28.
[4]. Guo, F., Li, X., Zhang, X., Wang, J., 2017. Assessment of precise Orbit and clock products for Galileo, Beidou, and QZSS from IGS Multi-GNSS Experiment (MGEX). GPS Solut. 21 (1),
279–290.
[5]. Han, S. C., Kwon, J. H., & Jekeli, C. (2001). Accurate absolute GPS positioning through satellite clock error estimation. Journal of Geodesy, 75(1), 33-43.
[6]. Li, J., et al., 2020. Benefits of BDS-3 B1C/B1I/B2a triple-frequency signals on precise positioning and ambiguity resolution. GPS solutions, 24 (4), 1–10.
[7]. Montenbruck, O., Steigenberger, P., Prange, L., Deng, Z., Zhao, Q., Perosanz, F., 2017. The Multi-GNSS Experiment (MGEX) of the international GNSS service (IGS)–achievements, prospects and challenges. Adv. Space Res. 59 (7), 1671–1697.
[8]. Montenbruck, O., Steigenberger, P., & Hauschild, A. (2015). Broadcast versus precise ephemerides: a multi-GNSS perspective. GPS solutions, 19(2), 321-333.
[9]. Ogutcu, S. (2020). Assessing the contribution of Galileo to GPS+ GLONASS PPP: Towards full operational capability. Measurement, 151, 107143.
Availability Analysis of GNSS Orbit and Clock Files
In this study, the satellite availability analysis of the publicly available final, rapid and ultra-rapid orbit (sp3) and clock files were investigated for GPS, GLONASS, Galileo, Beidou-2, BeiDou-3 and QZSS satellites within a one-year period of 2021. In addition, clock biases that do not exist in orbit files have also been calculated for each system. The results show that average number of GPS and GLONASS satellites are consistent among the products, however, the average GALILEO and BeiDou satellites are significantly changing among the products. The minimum average number of Galileo satellites was calculated for the final, rapid and ultra-rapid orbit products for the CNES (final), GFZ (fast) and GFZ (ultra) analysis centers, respectively. The minimum average number of satellites for BeiDou-3 (MEO) and QZSS was calculated for the CODE analysis center.
[1]. Bulbul, S., Bilgen, B., & Inal, C. (2021). The performance assessment of Precise Point Positioning (PPP) under various observation conditions. Measurement, 171, 108780.
[2]. Cao, X., et al., 2021a. Satellite availability and positioning performance of uncombined precise point positioning using BeiDou-2 and BeiDou-3 multi-frequency signals. Advances in space research, 67(4), 1303–1316.
[3]. Cohenour, C., & van Graas, F. (2011). GPS orbit and clock error distributions. NAVIGATION, Journal of the Institute of Navigation, 58(1), 17-28.
[4]. Guo, F., Li, X., Zhang, X., Wang, J., 2017. Assessment of precise Orbit and clock products for Galileo, Beidou, and QZSS from IGS Multi-GNSS Experiment (MGEX). GPS Solut. 21 (1),
279–290.
[5]. Han, S. C., Kwon, J. H., & Jekeli, C. (2001). Accurate absolute GPS positioning through satellite clock error estimation. Journal of Geodesy, 75(1), 33-43.
[6]. Li, J., et al., 2020. Benefits of BDS-3 B1C/B1I/B2a triple-frequency signals on precise positioning and ambiguity resolution. GPS solutions, 24 (4), 1–10.
[7]. Montenbruck, O., Steigenberger, P., Prange, L., Deng, Z., Zhao, Q., Perosanz, F., 2017. The Multi-GNSS Experiment (MGEX) of the international GNSS service (IGS)–achievements, prospects and challenges. Adv. Space Res. 59 (7), 1671–1697.
[8]. Montenbruck, O., Steigenberger, P., & Hauschild, A. (2015). Broadcast versus precise ephemerides: a multi-GNSS perspective. GPS solutions, 19(2), 321-333.
[9]. Ogutcu, S. (2020). Assessing the contribution of Galileo to GPS+ GLONASS PPP: Towards full operational capability. Measurement, 151, 107143.
S. Öğütçü, S. Alçay, C. Konukseven, ve Ö. F. Atiz, “Availability Analysis of GNSS Orbit and Clock Files”, ECJSE, c. 10, sy. 1, ss. 16–26, 2023, doi: 10.31202/ecjse.1095911.