Araştırma Makalesi
BibTex RIS Kaynak Göster

Endüstriyel Bir Merdanenin Dönen Jet Kullanarak Soğutulmasının Sayısal İncelenmesi

Yıl 2023, Cilt: 10 Sayı: 1, 147 - 159, 31.01.2023
https://doi.org/10.31202/ecjse.1175261

Öz

Endüstriyel merdanelerin etkin bir şekilde soğutulması, sistemin ve ürünün kalite kaybını önlemek için büyük öneme sahiptir. Merdane yüzeyindeki yüksek sıcaklık farkı, termal gerilmeye sebep olup, merdane yüzeyi ve üründe deformasyonlara neden olabilir. Bu çalışmada, deformasyonları önlemek için endüstriyel bir merdanenin dönen jetler kullanılarak soğutulması farklı parametreler için sayısal olarak incelenmiştir. Reynolds sayısı, yüzey ısı akısı ve akışkanın giriş sıcaklığındaki değişimin endüstriyel bir merdanenin ısı transfer performansı üzerindeki etkileri, merdanenin iç ve dış yüzeyi arasındaki sıcaklık farkı açısından incelenmiştir. Bu sayısal çalışmada ısı transferi ve akışkan akışını modellemek için ANSYS Fluent CFD programı kullanılmıştır. Sonuç olarak Re sayısının 1000'den 1700'e artması, merdane iç ve dış yüzeyi arasındaki sıcaklık farkının %45,4 oranında azalmasını sağlamıştır. Yüzey ısı akısını 5000'den 12500 W/m2'ye çıkarmak, iç ve dış yüzey sıcaklıkları arasındaki farkta %149,4'lük bir artışla sonuçlanmıştır. Soğutucu akışkan giriş sıcaklığının 5'ten 20°C'ye yükseltilmesi, yüzey sıcaklığında bir artışa neden olmuştur, ancak sistemin ısı transfer özelliklerinde önemli bir değişiklik olmamıştır. Bu çalışmanın sonuçlarının daha etkin soğutmalı endüstriyel merdane tasarımına katkı sağlayacağı değerlendirilmektedir.

Kaynakça

  • [1]. Liu Y., et al., “Numerical Simulation of Heat Transfer from Rotary Cylinder by Spray Cooling”, Mater Sci, 2017, 23,4, doi:10.5755/j01.ms.23.4.17322.
  • [2]. Lu Q., et al., “Numerical study of a rotating liquid jet impingement cooling system”, International Journal of Heat and Mass Transfer, 2020,163, 2,120446.
  • [3]. Luo J., et al., “Hydrodynamics and heat transfer of multiple droplets successively impacting on cylindrical surface”, International Journal of Heat and Mass Transfer, 2021, 180,121749.
  • [4]. Du C., et al., “Numerical study on vortex cooling flow and heat transfer behavior under rotating conditions”, International Journal of Heat and Mass Transfer, 2017, 105, 638–47.
  • [5]. Zhao X., et al., “Experimental investigation of surface temperature non-uniformity in spray cooling”, International Journal of Heat and Mass Transfer, 2020, 146, 118119.
  • [6]. Modak M., et al., “An Experimental Investigation on Heat Transfer Characteristics of Hot Surface by Using CuO–Water Nanofluids in Circular Jet Impingement Cooling”, Journal of Heat Transfer 2017, 140,1, doi:10.1115/1.4037396.
  • [7]. Selimefendigil F., Öztop H., “Analysis and predictive modeling of nanofluid-jet impingement cooling of an isothermal surface under the influence of a rotating cylinder”, International Journal of Heat and Mass Transfer, 2018, 121, 233–245.
  • [8]. Mahdavi M., et al., “Thermal analysis of a nanofluid free jet impingement on a rotating disk using volume of fluid in combination with discrete modelling”, International Journal of Thermal Sciences, 2020, 158,106532.
  • [9]. Baghel K., et al., “Inclined free-surface liquid jet impingement on semi-cylindrical convex curved and flat surfaces: Heat transfer characteristics”, International Communications in Heat and Mass Transfer, 2021, 121, 105116.
  • [10]. Pachpute S., Premachandran B., “Effect of number of round jets on impingement Heat Transfer from a Heated Cylinder”, Applied Thermal Engineering, 2019, 162:114308.
  • [11]. Jahedi M, Moshfegh B. “Experimental study of quenching process on a rotating hollow cylinder by one row of impinging jets”, 9th World Conference on Experimental Heat Transfer, Fluid Mechanics and Thermodynamics, 2017, 12-15 June, Iguazu Falls, Brazil.
  • [12]. Patil VS., Vedula RP., “Local heat transfer for jet impingement onto a concave surface including injection nozzle length to diameter and curvature ratio effects”, Experimental Thermal and Fluid Science, 2018, 92, 375–89.
  • [13]. Jiang L., et al., “Numerical investigation of conjugate heat transfer on a rotating disk under round liquid jet impingement”, International Journal of Thermal Sciences 2021, 170, 720-734.
  • [14]. Jahedi M., Moshfegh B., “Quenching a rotary hollow cylinder by multiple configurations of water-impinging jets”, International Journal of Heat and Mass Transfer, 2019, 137, 124–37.
  • [15]. Altaibi H.M., et al. “Review paper on heat transfer and flow dynamics in subsonic circular jets impinging on rotating disk”, Energy Reports, 2020, 6, 834-842.
  • [16]. Baghel K., “Heat transfer characteristics of free surface water jet impingement on a curved surface”, International Journal of Heat and Mass Transfer, 2020, 164, 120487.
  • [17]. Kilic M, Ali H., “Numerical investigation of combined effect of nanofluids and multiple impinging jets on heat transfer”, Thermal Science, 2019, 23, 3165–73.
  • [18]. Kilic M, Abdulvahitoglu A. “Numerical investigation of heat transfer at a rectangular channel with combined effect of nanofluids and swirling jets in a vehicle radiator”, Thermal Science, 2019, 23, 3627–37.
  • [19]. Al-Zuhairy RC., et al., “Al2O3-water nanofluid heat transfer enhancement of a twin impingement jet”, Case Studies in Thermal Engineering, 2020, 19, 100626.
  • [20]. Kareem Z.S., et al., “Heat transfer enhancement in single circular impingement jet by CuO-water nanofluid”. Case Studies in Thermal Engineering, 2019, 15, 100508.
  • [21]. Amjadian M., et al., “Heat transfer characteristics of impinging jet on a hot surface with constant heat flux using Cu2O–water nanofluid: An experimental study”, International Communications in Heat and Mass Transfer 2020, 112, 104509.
  • [22]. Lv J, Hu C, Bai M, Zeng K, Chang S, Gao D. “Experimental investigation of free single jet impingement using SiO2-water nanofluid”, Experimental Thermal and Fluid Science, 2017, 84, 39–46.
  • [23]. Kilic, M, Özcan, O. “Numerical study of the joint effect of nanoplastic and multiplier jets for different parameters”, Journal of The Faculty of Engineering and Architecture of Gazi University, 2019, 34, 1501-1516.
  • [24]. Shafiq F., et al., “Natural Convection Heat Transfer in an Enclosed Assembly of Thin Vertical Cylinders – A CFD Study”, Chemical Engineering and Technology, 2020, 43, 1648–1658.
  • [25]. FU, Tianliang, et al. “Experimental study on temperature drop during roller quenching process of large-section ultra-heavy steel plate”, Science Progress, 2021, 104.2: 00368504211009330.
  • [26]. Ma, H., “On heat transfer mechanisms in secondary cooling of continuous casting of steel slab”, School of Mechanical Engineering West Lafayette, Indiana 2021.
  • [27]. Kilic M., Ullah, A., “Numerical investigation of effect of different parameter on heat transfer for a crossflow heat exchanger by using nanofluids”, Journal of Thermal Engineering 2021, 7, 1980-1989.
  • [28]. Shafiq F, Ullah A, Nadeem M, Khan A, “Natural Convection Heat Transfer in an Enclosed Assembly of Thin Vertical Cylinders – A CFD Study”, Chemical Engineering and Technology, 2020, 43 (8), 1-12.

Numerical Investigation of Cooling an Industrial Roller by Using Swirling Jets

Yıl 2023, Cilt: 10 Sayı: 1, 147 - 159, 31.01.2023
https://doi.org/10.31202/ecjse.1175261

Öz

Effective cooling of industrial rollers has prime importance to prevent the quality degradation of the system and product. High temperature difference on the roller surface may result in thermal stresses and can cause deformations on roller surface and product. In order to prevent these deformations, cooling of an industrial roller by using swirling jets is investigated for different parameters numerically in this study. Effects of Reynolds number, surface heat flux and variation in inlet temperature of the fluid on the performance of an industrial roller are investigated in terms of temperature difference between inner and outer surface of the roller. ANSYS Fluent CFD program is used to simulate heat transfer and fluid flow in this numerical study. As a result, it is obtained that increasing Re number from 1000 to 1700 causes a decrease of 45.4% in the temperature difference between inner and outer surface of the roller. Increasing surface heat flux from 5000 to 12500 W/m2 has resulted in an increase of 149.4% in difference between inner and outer surface temperature. Increasing coolant fluid inlet temperature from 5 to 20°C has resulted in an increase of surface temperature but there is no significant change in heat transfer characteristics of the system. It is evaluated that the results of this study will contribute to design more effective cooled industrial roller.

Kaynakça

  • [1]. Liu Y., et al., “Numerical Simulation of Heat Transfer from Rotary Cylinder by Spray Cooling”, Mater Sci, 2017, 23,4, doi:10.5755/j01.ms.23.4.17322.
  • [2]. Lu Q., et al., “Numerical study of a rotating liquid jet impingement cooling system”, International Journal of Heat and Mass Transfer, 2020,163, 2,120446.
  • [3]. Luo J., et al., “Hydrodynamics and heat transfer of multiple droplets successively impacting on cylindrical surface”, International Journal of Heat and Mass Transfer, 2021, 180,121749.
  • [4]. Du C., et al., “Numerical study on vortex cooling flow and heat transfer behavior under rotating conditions”, International Journal of Heat and Mass Transfer, 2017, 105, 638–47.
  • [5]. Zhao X., et al., “Experimental investigation of surface temperature non-uniformity in spray cooling”, International Journal of Heat and Mass Transfer, 2020, 146, 118119.
  • [6]. Modak M., et al., “An Experimental Investigation on Heat Transfer Characteristics of Hot Surface by Using CuO–Water Nanofluids in Circular Jet Impingement Cooling”, Journal of Heat Transfer 2017, 140,1, doi:10.1115/1.4037396.
  • [7]. Selimefendigil F., Öztop H., “Analysis and predictive modeling of nanofluid-jet impingement cooling of an isothermal surface under the influence of a rotating cylinder”, International Journal of Heat and Mass Transfer, 2018, 121, 233–245.
  • [8]. Mahdavi M., et al., “Thermal analysis of a nanofluid free jet impingement on a rotating disk using volume of fluid in combination with discrete modelling”, International Journal of Thermal Sciences, 2020, 158,106532.
  • [9]. Baghel K., et al., “Inclined free-surface liquid jet impingement on semi-cylindrical convex curved and flat surfaces: Heat transfer characteristics”, International Communications in Heat and Mass Transfer, 2021, 121, 105116.
  • [10]. Pachpute S., Premachandran B., “Effect of number of round jets on impingement Heat Transfer from a Heated Cylinder”, Applied Thermal Engineering, 2019, 162:114308.
  • [11]. Jahedi M, Moshfegh B. “Experimental study of quenching process on a rotating hollow cylinder by one row of impinging jets”, 9th World Conference on Experimental Heat Transfer, Fluid Mechanics and Thermodynamics, 2017, 12-15 June, Iguazu Falls, Brazil.
  • [12]. Patil VS., Vedula RP., “Local heat transfer for jet impingement onto a concave surface including injection nozzle length to diameter and curvature ratio effects”, Experimental Thermal and Fluid Science, 2018, 92, 375–89.
  • [13]. Jiang L., et al., “Numerical investigation of conjugate heat transfer on a rotating disk under round liquid jet impingement”, International Journal of Thermal Sciences 2021, 170, 720-734.
  • [14]. Jahedi M., Moshfegh B., “Quenching a rotary hollow cylinder by multiple configurations of water-impinging jets”, International Journal of Heat and Mass Transfer, 2019, 137, 124–37.
  • [15]. Altaibi H.M., et al. “Review paper on heat transfer and flow dynamics in subsonic circular jets impinging on rotating disk”, Energy Reports, 2020, 6, 834-842.
  • [16]. Baghel K., “Heat transfer characteristics of free surface water jet impingement on a curved surface”, International Journal of Heat and Mass Transfer, 2020, 164, 120487.
  • [17]. Kilic M, Ali H., “Numerical investigation of combined effect of nanofluids and multiple impinging jets on heat transfer”, Thermal Science, 2019, 23, 3165–73.
  • [18]. Kilic M, Abdulvahitoglu A. “Numerical investigation of heat transfer at a rectangular channel with combined effect of nanofluids and swirling jets in a vehicle radiator”, Thermal Science, 2019, 23, 3627–37.
  • [19]. Al-Zuhairy RC., et al., “Al2O3-water nanofluid heat transfer enhancement of a twin impingement jet”, Case Studies in Thermal Engineering, 2020, 19, 100626.
  • [20]. Kareem Z.S., et al., “Heat transfer enhancement in single circular impingement jet by CuO-water nanofluid”. Case Studies in Thermal Engineering, 2019, 15, 100508.
  • [21]. Amjadian M., et al., “Heat transfer characteristics of impinging jet on a hot surface with constant heat flux using Cu2O–water nanofluid: An experimental study”, International Communications in Heat and Mass Transfer 2020, 112, 104509.
  • [22]. Lv J, Hu C, Bai M, Zeng K, Chang S, Gao D. “Experimental investigation of free single jet impingement using SiO2-water nanofluid”, Experimental Thermal and Fluid Science, 2017, 84, 39–46.
  • [23]. Kilic, M, Özcan, O. “Numerical study of the joint effect of nanoplastic and multiplier jets for different parameters”, Journal of The Faculty of Engineering and Architecture of Gazi University, 2019, 34, 1501-1516.
  • [24]. Shafiq F., et al., “Natural Convection Heat Transfer in an Enclosed Assembly of Thin Vertical Cylinders – A CFD Study”, Chemical Engineering and Technology, 2020, 43, 1648–1658.
  • [25]. FU, Tianliang, et al. “Experimental study on temperature drop during roller quenching process of large-section ultra-heavy steel plate”, Science Progress, 2021, 104.2: 00368504211009330.
  • [26]. Ma, H., “On heat transfer mechanisms in secondary cooling of continuous casting of steel slab”, School of Mechanical Engineering West Lafayette, Indiana 2021.
  • [27]. Kilic M., Ullah, A., “Numerical investigation of effect of different parameter on heat transfer for a crossflow heat exchanger by using nanofluids”, Journal of Thermal Engineering 2021, 7, 1980-1989.
  • [28]. Shafiq F, Ullah A, Nadeem M, Khan A, “Natural Convection Heat Transfer in an Enclosed Assembly of Thin Vertical Cylinders – A CFD Study”, Chemical Engineering and Technology, 2020, 43 (8), 1-12.
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Mustafa Kılıç 0000-0002-8006-149X

Mahir Şahin 0000-0002-9565-9160

Tolga Demircan 0000-0003-4805-6428

Zülfikar Kilinc 0000-0003-4270-712X

Atta Ullah 0000-0001-8010-3904

Yayımlanma Tarihi 31 Ocak 2023
Gönderilme Tarihi 15 Eylül 2022
Kabul Tarihi 12 Aralık 2022
Yayımlandığı Sayı Yıl 2023 Cilt: 10 Sayı: 1

Kaynak Göster

IEEE M. Kılıç, M. Şahin, T. Demircan, Z. Kilinc, ve A. Ullah, “Numerical Investigation of Cooling an Industrial Roller by Using Swirling Jets”, ECJSE, c. 10, sy. 1, ss. 147–159, 2023, doi: 10.31202/ecjse.1175261.