Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2024, Cilt: 11 Sayı: 1, 74 - 81, 13.03.2024
https://doi.org/10.31202/ecjse.1347168

Öz

Kaynakça

  • [1] E. Cetin and Z. Q. Zhu. Optimization of torque performance of fspm machines by rotor pole shaping using fea and genetic algorithm. In 2022 Second International Conference on Sustainable Mobility Applications, Renewables and Technology (SMART), pages 1–8, Cassino, Italy, 2022.
  • [2] W. Hua, M. Cheng, Z. Q. Zhu, and D. Howe. Analysis and optimization of back-emf waveform of a flux-switching pm motor. IEEE Trans. Energy Conversion, 23(3):723–733, 2008.
  • [3] Z. Q. Zhu, Y. Pang, D. Howe, S. Iwasaki, R. Deodhar, and A. Pride. Analysis of electromagnetic performance of fluxswitching pm machines by non-linear adaptive lumped parameter magnetic circuit model. IEEE Trans. Magn., 41(11): 4277–4287, 2005.
  • [4] Z. Q. Zhu, A. S. Thomas, J. T. Chen, and G. W. Jewell. Cogging torque in flux-switching permanent magnet machines. IEEE Trans. Magn., 45(10):4708–4711, Oct 2009.
  • [5] J.-W. Kwon, J.-h. Lee, W. Zhao, and B.-I. Kwon. Flux-switching permanent magnet machine with phase-group concentrated-coil windings and cogging torque reduction technique. Energies, 11(2758), 2018.
  • [6] S. E. Abdollahi and S. Vaez-Zadeh. Reducing cogging torque in flux switching motors with segmented rotor. IEEE Trans. Magn., 49(10):5304–5309, Oct 2013.
  • [7] N. Ahmad, F. Khan, H. A. Khan, S. Khan, F. Khan, M. A. Khan, and I. Ahmad. Effective computational techniques of reducing cogging torque in permanent magnet flux switching machine. BUITEMS, 9(2):19–25, 2019.
  • [8] J. O. Grafmüller and J. Zhang. Asymmetric stator teeth for torque ripple reduction of permanent magnet synchronous machines for hybrid electric vehicles. In 2014 IEEE International Electric Vehicle Conference (IEVC), pages 1–7, Florence, Italy, 2014.
  • [9] Y. Mao, W. Zhao, S. Zhu, Q. Chen, and J. Ji. Vibration investigation of spoke-type pm machine with asymmetric rotor considering modulation effect of stator teeth. IEEE Trans. Ind. Electron., 68(10):9092–9103, Oct 2021.
  • [10] W. Jiang and et al. A novel stator wound field flux switching machine with the combination of overlapping armature winding and asymmetric stator poles. IEEE Trans. Ind. Electron., 69(3):2737–2748, Mar 2022.
  • [11] J. Xiu, S. Wang, and Y. Xiu. Reducing cogging torque of 6/4 pole fspm machine by optimising parameters of chamfering and flange rotor pole shape without skewing teeth. IET Electric Power Applications, 13:277–284, 2019.
  • [12] L. R. Huang, J. H. Feng, S. Y. Guo, Y. F. Li, J. X. Shi, and Z. Q. Zhu. Rotor shaping method for torque ripple mitigation in variable flux reluctance machines. IEEE Trans. Energy Conversion, 33(3):1579–1589, Sept 2018.
  • [13] X. Zhu, W. Hua, and G. Zhang. Analysis and reduction of cogging torque for flux-switching permanent magnet machines. IEEE Trans. Ind. Appl., 55(6):5854–5864, Nov-Dec 2019.
  • [14] B. Khan, F. Khan, W. Ullah, B. Ullah, and S. Hussain. Torque ripples reduction and performance analysis of electrically excited flux switching motor. IEEE Access, 10:4307–4317, 2022.
  • [15] S. Shin, H. Naruse, T. Kosaka, and N. Matsui. Design study on salient pole shape of rotor in sr motor for vibration suppression under 2-stage commutation control. In XIII International Conference on Electrical Machines (ICEM), pages 1478–1484, 2018.
  • [16] J. D. McFarland, T. M. Jahns, and A. M. EL-Refaie. Analysis of the torque production mechanism for flux-switching permanent magnet machines. 2014 IEEE Energy Conversion Congress and Exposition (ECCE), pages 310–317, 2014.
  • [17] Z. Z. Wu and Z. Q. Zhu. Analysis of air-gap field modulation and magnetic gearing effects in switched flux permanent magnet machines. IEEE Trans. Magn., 51(5):8105012, May 2015.
  • [18] D. Li, R. Qu, J. Li, W. Xu, and L. Wu. Synthesis of flux switching permanent magnet machines. IEEE Trans. Energy Convers., 99(2):1–12, Aug 2015.

The Effects of the Unequal Rotor Slot Arc on Cogging Torque for Flux Switching Permanent Magnet Machines

Yıl 2024, Cilt: 11 Sayı: 1, 74 - 81, 13.03.2024
https://doi.org/10.31202/ecjse.1347168

Öz

Many of the electric machine researchers are studying the Flux switching permanent magnet (FSPM) machines. The cogging torque is one of the most unwanted parameter for highly sensitive electric machine applications. In this study, the configuration of the unequal rotor slot arc (URSA) to see the effects of the asymmetry for three phase FSPM machine has been studied. The proposed asymmetry contains of presenting different arc angled rotor poles and analyzing the torque performance of them by using 2D finite element analysis (2D-FEA). 12-stator pole/ 10-rotor pole (12s/10p) FSPM machine topology has been chosen for the design. Results proved that unequal rotor slot arc proposition demonstrate good performance in comparison to the symmetric design. Inequality on the rotor slots were simulated by using parametric analysis to minimize the cogging torque. The suggested design indicates a substantial reduction in cogging torque, achieving a conspicuous minimization. Consequently, the suggested using unequal rotor slot arc for FSPM machine has reasonable outcomes.

Kaynakça

  • [1] E. Cetin and Z. Q. Zhu. Optimization of torque performance of fspm machines by rotor pole shaping using fea and genetic algorithm. In 2022 Second International Conference on Sustainable Mobility Applications, Renewables and Technology (SMART), pages 1–8, Cassino, Italy, 2022.
  • [2] W. Hua, M. Cheng, Z. Q. Zhu, and D. Howe. Analysis and optimization of back-emf waveform of a flux-switching pm motor. IEEE Trans. Energy Conversion, 23(3):723–733, 2008.
  • [3] Z. Q. Zhu, Y. Pang, D. Howe, S. Iwasaki, R. Deodhar, and A. Pride. Analysis of electromagnetic performance of fluxswitching pm machines by non-linear adaptive lumped parameter magnetic circuit model. IEEE Trans. Magn., 41(11): 4277–4287, 2005.
  • [4] Z. Q. Zhu, A. S. Thomas, J. T. Chen, and G. W. Jewell. Cogging torque in flux-switching permanent magnet machines. IEEE Trans. Magn., 45(10):4708–4711, Oct 2009.
  • [5] J.-W. Kwon, J.-h. Lee, W. Zhao, and B.-I. Kwon. Flux-switching permanent magnet machine with phase-group concentrated-coil windings and cogging torque reduction technique. Energies, 11(2758), 2018.
  • [6] S. E. Abdollahi and S. Vaez-Zadeh. Reducing cogging torque in flux switching motors with segmented rotor. IEEE Trans. Magn., 49(10):5304–5309, Oct 2013.
  • [7] N. Ahmad, F. Khan, H. A. Khan, S. Khan, F. Khan, M. A. Khan, and I. Ahmad. Effective computational techniques of reducing cogging torque in permanent magnet flux switching machine. BUITEMS, 9(2):19–25, 2019.
  • [8] J. O. Grafmüller and J. Zhang. Asymmetric stator teeth for torque ripple reduction of permanent magnet synchronous machines for hybrid electric vehicles. In 2014 IEEE International Electric Vehicle Conference (IEVC), pages 1–7, Florence, Italy, 2014.
  • [9] Y. Mao, W. Zhao, S. Zhu, Q. Chen, and J. Ji. Vibration investigation of spoke-type pm machine with asymmetric rotor considering modulation effect of stator teeth. IEEE Trans. Ind. Electron., 68(10):9092–9103, Oct 2021.
  • [10] W. Jiang and et al. A novel stator wound field flux switching machine with the combination of overlapping armature winding and asymmetric stator poles. IEEE Trans. Ind. Electron., 69(3):2737–2748, Mar 2022.
  • [11] J. Xiu, S. Wang, and Y. Xiu. Reducing cogging torque of 6/4 pole fspm machine by optimising parameters of chamfering and flange rotor pole shape without skewing teeth. IET Electric Power Applications, 13:277–284, 2019.
  • [12] L. R. Huang, J. H. Feng, S. Y. Guo, Y. F. Li, J. X. Shi, and Z. Q. Zhu. Rotor shaping method for torque ripple mitigation in variable flux reluctance machines. IEEE Trans. Energy Conversion, 33(3):1579–1589, Sept 2018.
  • [13] X. Zhu, W. Hua, and G. Zhang. Analysis and reduction of cogging torque for flux-switching permanent magnet machines. IEEE Trans. Ind. Appl., 55(6):5854–5864, Nov-Dec 2019.
  • [14] B. Khan, F. Khan, W. Ullah, B. Ullah, and S. Hussain. Torque ripples reduction and performance analysis of electrically excited flux switching motor. IEEE Access, 10:4307–4317, 2022.
  • [15] S. Shin, H. Naruse, T. Kosaka, and N. Matsui. Design study on salient pole shape of rotor in sr motor for vibration suppression under 2-stage commutation control. In XIII International Conference on Electrical Machines (ICEM), pages 1478–1484, 2018.
  • [16] J. D. McFarland, T. M. Jahns, and A. M. EL-Refaie. Analysis of the torque production mechanism for flux-switching permanent magnet machines. 2014 IEEE Energy Conversion Congress and Exposition (ECCE), pages 310–317, 2014.
  • [17] Z. Z. Wu and Z. Q. Zhu. Analysis of air-gap field modulation and magnetic gearing effects in switched flux permanent magnet machines. IEEE Trans. Magn., 51(5):8105012, May 2015.
  • [18] D. Li, R. Qu, J. Li, W. Xu, and L. Wu. Synthesis of flux switching permanent magnet machines. IEEE Trans. Energy Convers., 99(2):1–12, Aug 2015.
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik Tasarımı, Mühendislik Uygulaması
Bölüm Makaleler
Yazarlar

Emrah Çetin 0000-0002-7023-6604

Yayımlanma Tarihi 13 Mart 2024
Gönderilme Tarihi 21 Ağustos 2023
Kabul Tarihi 16 Kasım 2023
Yayımlandığı Sayı Yıl 2024 Cilt: 11 Sayı: 1

Kaynak Göster

IEEE E. Çetin, “The Effects of the Unequal Rotor Slot Arc on Cogging Torque for Flux Switching Permanent Magnet Machines”, ECJSE, c. 11, sy. 1, ss. 74–81, 2024, doi: 10.31202/ecjse.1347168.