Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2025, Cilt: 12 Sayı: 1, 74 - 85, 31.01.2025

Öz

Kaynakça

  • [1] S. Al-Shoukry, T. H. Rassem, and N. M. Makbol, ‘‘Alzheimer’s diseases detection by using deep learning algorithms: A mini-review,’’ IEEE Access, vol. 8, pp. 77 131–77 141, 2020.
  • [2] A. W. Salehi, P. Baglat, B. B. Sharma, G. Gupta, and A. Upadhya, ‘‘A CNN Model: Earlier Diagnosis and Classification of Alzheimer Disease using MRI,’’ in Proceedings - International Conference on Smart Electronics and Communication, ICOSEC 2020, 2020.
  • [3] W. Salehi, P. Baglat, G. Gupta, S. B. Khan, A. Almusharraf, A. Alqahtani, and A. Kumar, ‘‘An Approach to Binary Classification of Alzheimer’s Disease Using LSTM,’’ Bioengineering 2023, Vol. 10, Page 950, vol. 10, no. 8, p. 950, aug 2023.
  • [4] E. Hanbay and A. Ari, ‘‘Özel Blok Yapıları Kullanarak Tasarlanan Derin Öğrenme Mimarileri ile Alzheimer Hastalık Tespiti,’’ Firat Universitesi Muhendislik Bilimleri Dergisi, vol. 35, no. 2, pp. 745–752, sep 2023.
  • [5] K. Aderghal, A. Khvostikov, A. Krylov, J. Benois-Pineau, K. Afdel, and G. Catheline, ‘‘Classification of Alzheimer Disease on Imaging Modalities with Deep CNNs Using Cross-Modal Transfer Learning,’’ Proceedings - IEEE Symposium on Computer-Based Medical Systems, vol. 2018-June, pp. 345–350, jul 2018.
  • [6] M. Ü. ÖZİÇ and S. ÖZŞEN, ‘‘3B Alzheimer MR Görüntülerinin Hacimsel Kayıp Bölgelerindeki Voksel Değerleri Kullanılarak Sınıflandırılması,’’ El-Cezeri Fen ve Mühendislik Dergisi, 2020.
  • [7] ‘‘Alzheimer’s Facts and Figures Report | Alzheimer’s Association.’’
  • [Online]. Available: https://www.alz.org/alzheimers-dementia/facts-figures
  • [8] Y. Eroglu, M. Yildirim, and A. Cinar, ‘‘mRMR-based hybrid convolutional neural network model for classification of Alzheimer’s disease on brain magnetic resonance images,’’ International Journal of Imaging Systems and Technology, vol. 32, no. 2, 2022.
  • [9] S. Dan, D. Sharma, K. Rastogi, Shaloo, H. Ojha, M. Pathak, and R. Singhal, ‘‘Therapeutic and diagnostic applications of nanocomposites in the treatment Alzheimer’s disease studies,’’ Biointerface Research in Applied Chemistry, vol. 12, no. 1, pp. 940–960, feb 2022.
  • [10] S. Ahmed, K. Y. Choi, J. J. Lee, B. C. Kim, G. R. Kwon, K. H. Lee, and H. Y. Jung, ‘‘Ensembles of Patch-Based Classifiers for Diagnosis of Alzheimer Diseases,’’ IEEE Access, vol. 7, pp. 73 373–73 383, 2019.
  • [11] D. Shen, C. Y. Wee, D. Zhang, L. Zhou, and P. T. Yap, ‘‘Machine learning techniques for AD/MCI diagnosis and prognosis,’’ Intelligent Systems Reference Library, vol. 56, pp. 147–179, 2014.
  • [12] Y.Wang, M. Liu, L. Guo, and D. Shen, ‘‘Kernel-based multi-task joint sparse classification for Alzheimer’S disease,’’ Proceedings - International Symposium on Biomedical Imaging, pp. 1364–1367, 2013.
  • [13] J. Escudero, J. P. Zajicek, and E. Ifeachor, ‘‘Machine Learning classification of MRI features of Alzheimer’s disease and mild cognitive impairment subjects to reduce the sample size in clinical trials,’’ Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, pp. 7957–7960, 2011.
  • [14] A. Ortiz, J. M. Górriz, J. Ramírez, and F. J. Martínez-Murcia, ‘‘LVQ-SVM based CAD tool applied to structural MRI for the diagnosis of the Alzheimer’s disease,’’ Pattern Recognition Letters, vol. 34, no. 14, pp. 1725–1733, oct 2013.
  • [15] S. T. Yang, J. D. Lee, T. C. Chang, C. H. Huang, J. J. Wang, W. C. Hsu, H. L. Chan, Y. Y. Wai, and K. Y. Li, ‘‘Discrimination between Alzheimer’s disease and mild cognitive impairment using SOM and PSO-SVM,’’ Computational and Mathematical Methods in Medicine, vol. 2013, 2013.
  • [16] K. R. Gray, P. Aljabar, R. A. Heckemann, A. Hammers, and D. Rueckert, ‘‘Random forest-based similarity measures for multi-modal classification of Alzheimer’s disease,’’ NeuroImage, vol. 65, pp. 167–175, jan 2013.
  • [17] A. B. Tufail, Y. K. Ma, and Q. N. Zhang, ‘‘Binary Classification of Alzheimer’s Disease Using sMRI Imaging Modality and Deep Learning,’’ Journal of Digital Imaging, vol. 33, no. 5, pp. 1073–1090, oct 2020.
  • [18] R. Prajapati, U. Khatri, and G. R. Kwon, ‘‘An Efficient Deep Neural Network Binary Classifier for Alzheimer’s Disease Classification,’’ 3rd International Conference on Artificial Intelligence in Information and Communication, ICAIIC 2021, pp. 231–234, apr 2021.
  • [19] D. Nguyen, H. Nguyen, H. Ong, H. Le, H. Ha, N. T. Duc, and H. T. Ngo, ‘‘Ensemble learning using traditional machine learning and deep neural network for diagnosis of Alzheimer’s disease,’’ IBRO Neuroscience Reports, vol. 13, pp. 255–263, dec 2022.
  • [20] J. Venugopalan, L. Tong, H. R. Hassanzadeh, and M. D. Wang, ‘‘Multimodal deep learning models for early detection of Alzheimer’s disease stage,’’ Scientific Reports 2021 11:1, vol. 11, no. 1, pp. 1–13, feb 2021.
  • [21] ‘‘Alzheimer’s Dataset ( 4 class of Images) | Kaggle.’’
  • [Online]. Available: https://www.kaggle.com/datasets/tourist55/alzheimers-dataset-4-class-of-images
  • [22] M. Hon and N. M. Khan, ‘‘Towards Alzheimer’s disease classification through transfer learning,’’ Proceedings - 2017 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2017, vol. 2017-January, pp. 1166–1169, dec 2017.
  • [23] J. Plested and T. Gedeon, ‘‘Deep transfer learning for image classification: a survey.’’
  • [24] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, ‘‘How transferable are features in deep neural networks?’’ Advances in Neural Information Processing Systems, vol. 4, no. January, pp. 3320–3328, nov 2014.
  • [25] ‘‘Classification of Alzheimer ’ s disease subjects from MRI using hippocampal visual features To cite this version : HAL Id : hal-00993379,’’ Computerized Medical Imaging and Graphics, vol. 44, no. 1, 2015.
  • [26] J. Brownlee, ‘‘A Gentle Introduction to Dropout for Regularizing Deep Neural Networks,’’ 2018.
  • [27] F. Shu and L. Tian, ‘‘Deep Learning Methods for Alzheimer’s Disease Prediction Project Category: Computer Vision.’’
  • [28] E. Mggdadi, A. Al-Aiad, M. S. Al-Ayyad, and A. Darabseh, ‘‘Prediction Alzheimer’s disease from MRI images using deep learning,’’ in 2021 12th International Conference on Information and Communication Systems, ICICS 2021, 2021.
  • [29] S. A. Ajagbe, K. A. Amuda, M. A. Oladipupo, O. F. AFE, and K. I. Okesola, ‘‘Multi-classification of alzheimer disease on magnetic resonance images (MRI) using deep convolutional neural network (DCNN) approaches,’’ International Journal of Advanced Computer Research, vol. 11, no. 53, 2021.
  • [30] S. Murugan, C. Venkatesan, M. G. Sumithra, X. Z. Gao, B. Elakkiya, M. Akila, and S. Manoharan, ‘‘DEMNET: A Deep Learning Model for Early Diagnosis of Alzheimer Diseases and Dementia from MR Images,’’ IEEE Access, vol. 9, pp. 90 319–90 329, 2021.
  • [31] B. A. Mohammed, E. M. Senan, T. H. Rassem, N. M. Makbol, A. A. Alanazi, Z. G. Al-Mekhlafi, T. S. Almurayziq, and F. A. Ghaleb, ‘‘Multi-Method Analysis of Medical Records and MRI Images for Early Diagnosis of Dementia and Alzheimer’s Disease Based on Deep Learning and Hybrid Methods,’’ Electronics 2021, Vol. 10, Page 2860, vol. 10, no. 22, p. 2860, nov 2021.
  • [32] C. Techa, M. Ridouani, L. Hassouni, and H. Anoun, ‘‘Alzheimer’s Disease Multi-class Classification Model Based on CNN and StackNet Using Brain MRI Data,’’ Lecture Notes on Data Engineering and Communications Technologies, vol. 152, pp. 248–259, 2023.
  • [33] S. Sharma, S. Gupta, D. Gupta, A. Altameem, A. K. J. Saudagar, R. C. Poonia, and S. R. Nayak, ‘‘HTLML: Hybrid AI Based Model for Detection of Alzheimer’s Disease,’’ Diagnostics, vol. 12, no. 8, 2022.
  • [34] S. Sharma, S. Gupta, D. Gupta, S. Juneja, A. Mahmoud, S. El–Sappagh, and K. S. Kwak, ‘‘Transfer learning-based modified inception model for the diagnosis of Alzheimer’s disease,’’ Frontiers in Computational Neuroscience, vol. 16, 2022.
  • [35] M. G. Hussain and Y. Shiren, ‘‘Identifying Alzheimer Disease Dementia Levels Using Machine Learning Methods,’’ Medical Research Archives, vol. 11, no. 7.1, nov 2023.

Classification of Dementia Levels by Using Different Convolutional Neural Network Architectures

Yıl 2025, Cilt: 12 Sayı: 1, 74 - 85, 31.01.2025

Öz

Dementia or Alzheimer is a disease that causes symptoms such as forgetfulness and loss of physical ability, which will add to the individual's life in later stages, along with morphological changes in the brain. Unfortunately, a definitive treatment for these diseases has not yet been found. However, it is aimed at slowing down the progression of the disease to ensure that the patient is less affected by these adverse conditions and to protect living standards with early diagnosis of the disease. In addition, a complete diagnosis of the disease requires a series of tests and a tiring diagnostic phase to be evaluated by an experienced specialist. High-resolution magnetic resonance imaging is used to make this determination. This study tries to determine the stage of the disease or whether the individual is healthy by using MR.MR images of individuals in 4 stages of the disease, one of which is a healthy individual, were described as a classification problem and tried to be solved using VGG, Resnet, and Mobilenet architectures. Over 95% success has been achieved by supporting the proposed architecture with feature analysis and classical architectures.

Kaynakça

  • [1] S. Al-Shoukry, T. H. Rassem, and N. M. Makbol, ‘‘Alzheimer’s diseases detection by using deep learning algorithms: A mini-review,’’ IEEE Access, vol. 8, pp. 77 131–77 141, 2020.
  • [2] A. W. Salehi, P. Baglat, B. B. Sharma, G. Gupta, and A. Upadhya, ‘‘A CNN Model: Earlier Diagnosis and Classification of Alzheimer Disease using MRI,’’ in Proceedings - International Conference on Smart Electronics and Communication, ICOSEC 2020, 2020.
  • [3] W. Salehi, P. Baglat, G. Gupta, S. B. Khan, A. Almusharraf, A. Alqahtani, and A. Kumar, ‘‘An Approach to Binary Classification of Alzheimer’s Disease Using LSTM,’’ Bioengineering 2023, Vol. 10, Page 950, vol. 10, no. 8, p. 950, aug 2023.
  • [4] E. Hanbay and A. Ari, ‘‘Özel Blok Yapıları Kullanarak Tasarlanan Derin Öğrenme Mimarileri ile Alzheimer Hastalık Tespiti,’’ Firat Universitesi Muhendislik Bilimleri Dergisi, vol. 35, no. 2, pp. 745–752, sep 2023.
  • [5] K. Aderghal, A. Khvostikov, A. Krylov, J. Benois-Pineau, K. Afdel, and G. Catheline, ‘‘Classification of Alzheimer Disease on Imaging Modalities with Deep CNNs Using Cross-Modal Transfer Learning,’’ Proceedings - IEEE Symposium on Computer-Based Medical Systems, vol. 2018-June, pp. 345–350, jul 2018.
  • [6] M. Ü. ÖZİÇ and S. ÖZŞEN, ‘‘3B Alzheimer MR Görüntülerinin Hacimsel Kayıp Bölgelerindeki Voksel Değerleri Kullanılarak Sınıflandırılması,’’ El-Cezeri Fen ve Mühendislik Dergisi, 2020.
  • [7] ‘‘Alzheimer’s Facts and Figures Report | Alzheimer’s Association.’’
  • [Online]. Available: https://www.alz.org/alzheimers-dementia/facts-figures
  • [8] Y. Eroglu, M. Yildirim, and A. Cinar, ‘‘mRMR-based hybrid convolutional neural network model for classification of Alzheimer’s disease on brain magnetic resonance images,’’ International Journal of Imaging Systems and Technology, vol. 32, no. 2, 2022.
  • [9] S. Dan, D. Sharma, K. Rastogi, Shaloo, H. Ojha, M. Pathak, and R. Singhal, ‘‘Therapeutic and diagnostic applications of nanocomposites in the treatment Alzheimer’s disease studies,’’ Biointerface Research in Applied Chemistry, vol. 12, no. 1, pp. 940–960, feb 2022.
  • [10] S. Ahmed, K. Y. Choi, J. J. Lee, B. C. Kim, G. R. Kwon, K. H. Lee, and H. Y. Jung, ‘‘Ensembles of Patch-Based Classifiers for Diagnosis of Alzheimer Diseases,’’ IEEE Access, vol. 7, pp. 73 373–73 383, 2019.
  • [11] D. Shen, C. Y. Wee, D. Zhang, L. Zhou, and P. T. Yap, ‘‘Machine learning techniques for AD/MCI diagnosis and prognosis,’’ Intelligent Systems Reference Library, vol. 56, pp. 147–179, 2014.
  • [12] Y.Wang, M. Liu, L. Guo, and D. Shen, ‘‘Kernel-based multi-task joint sparse classification for Alzheimer’S disease,’’ Proceedings - International Symposium on Biomedical Imaging, pp. 1364–1367, 2013.
  • [13] J. Escudero, J. P. Zajicek, and E. Ifeachor, ‘‘Machine Learning classification of MRI features of Alzheimer’s disease and mild cognitive impairment subjects to reduce the sample size in clinical trials,’’ Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, pp. 7957–7960, 2011.
  • [14] A. Ortiz, J. M. Górriz, J. Ramírez, and F. J. Martínez-Murcia, ‘‘LVQ-SVM based CAD tool applied to structural MRI for the diagnosis of the Alzheimer’s disease,’’ Pattern Recognition Letters, vol. 34, no. 14, pp. 1725–1733, oct 2013.
  • [15] S. T. Yang, J. D. Lee, T. C. Chang, C. H. Huang, J. J. Wang, W. C. Hsu, H. L. Chan, Y. Y. Wai, and K. Y. Li, ‘‘Discrimination between Alzheimer’s disease and mild cognitive impairment using SOM and PSO-SVM,’’ Computational and Mathematical Methods in Medicine, vol. 2013, 2013.
  • [16] K. R. Gray, P. Aljabar, R. A. Heckemann, A. Hammers, and D. Rueckert, ‘‘Random forest-based similarity measures for multi-modal classification of Alzheimer’s disease,’’ NeuroImage, vol. 65, pp. 167–175, jan 2013.
  • [17] A. B. Tufail, Y. K. Ma, and Q. N. Zhang, ‘‘Binary Classification of Alzheimer’s Disease Using sMRI Imaging Modality and Deep Learning,’’ Journal of Digital Imaging, vol. 33, no. 5, pp. 1073–1090, oct 2020.
  • [18] R. Prajapati, U. Khatri, and G. R. Kwon, ‘‘An Efficient Deep Neural Network Binary Classifier for Alzheimer’s Disease Classification,’’ 3rd International Conference on Artificial Intelligence in Information and Communication, ICAIIC 2021, pp. 231–234, apr 2021.
  • [19] D. Nguyen, H. Nguyen, H. Ong, H. Le, H. Ha, N. T. Duc, and H. T. Ngo, ‘‘Ensemble learning using traditional machine learning and deep neural network for diagnosis of Alzheimer’s disease,’’ IBRO Neuroscience Reports, vol. 13, pp. 255–263, dec 2022.
  • [20] J. Venugopalan, L. Tong, H. R. Hassanzadeh, and M. D. Wang, ‘‘Multimodal deep learning models for early detection of Alzheimer’s disease stage,’’ Scientific Reports 2021 11:1, vol. 11, no. 1, pp. 1–13, feb 2021.
  • [21] ‘‘Alzheimer’s Dataset ( 4 class of Images) | Kaggle.’’
  • [Online]. Available: https://www.kaggle.com/datasets/tourist55/alzheimers-dataset-4-class-of-images
  • [22] M. Hon and N. M. Khan, ‘‘Towards Alzheimer’s disease classification through transfer learning,’’ Proceedings - 2017 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2017, vol. 2017-January, pp. 1166–1169, dec 2017.
  • [23] J. Plested and T. Gedeon, ‘‘Deep transfer learning for image classification: a survey.’’
  • [24] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, ‘‘How transferable are features in deep neural networks?’’ Advances in Neural Information Processing Systems, vol. 4, no. January, pp. 3320–3328, nov 2014.
  • [25] ‘‘Classification of Alzheimer ’ s disease subjects from MRI using hippocampal visual features To cite this version : HAL Id : hal-00993379,’’ Computerized Medical Imaging and Graphics, vol. 44, no. 1, 2015.
  • [26] J. Brownlee, ‘‘A Gentle Introduction to Dropout for Regularizing Deep Neural Networks,’’ 2018.
  • [27] F. Shu and L. Tian, ‘‘Deep Learning Methods for Alzheimer’s Disease Prediction Project Category: Computer Vision.’’
  • [28] E. Mggdadi, A. Al-Aiad, M. S. Al-Ayyad, and A. Darabseh, ‘‘Prediction Alzheimer’s disease from MRI images using deep learning,’’ in 2021 12th International Conference on Information and Communication Systems, ICICS 2021, 2021.
  • [29] S. A. Ajagbe, K. A. Amuda, M. A. Oladipupo, O. F. AFE, and K. I. Okesola, ‘‘Multi-classification of alzheimer disease on magnetic resonance images (MRI) using deep convolutional neural network (DCNN) approaches,’’ International Journal of Advanced Computer Research, vol. 11, no. 53, 2021.
  • [30] S. Murugan, C. Venkatesan, M. G. Sumithra, X. Z. Gao, B. Elakkiya, M. Akila, and S. Manoharan, ‘‘DEMNET: A Deep Learning Model for Early Diagnosis of Alzheimer Diseases and Dementia from MR Images,’’ IEEE Access, vol. 9, pp. 90 319–90 329, 2021.
  • [31] B. A. Mohammed, E. M. Senan, T. H. Rassem, N. M. Makbol, A. A. Alanazi, Z. G. Al-Mekhlafi, T. S. Almurayziq, and F. A. Ghaleb, ‘‘Multi-Method Analysis of Medical Records and MRI Images for Early Diagnosis of Dementia and Alzheimer’s Disease Based on Deep Learning and Hybrid Methods,’’ Electronics 2021, Vol. 10, Page 2860, vol. 10, no. 22, p. 2860, nov 2021.
  • [32] C. Techa, M. Ridouani, L. Hassouni, and H. Anoun, ‘‘Alzheimer’s Disease Multi-class Classification Model Based on CNN and StackNet Using Brain MRI Data,’’ Lecture Notes on Data Engineering and Communications Technologies, vol. 152, pp. 248–259, 2023.
  • [33] S. Sharma, S. Gupta, D. Gupta, A. Altameem, A. K. J. Saudagar, R. C. Poonia, and S. R. Nayak, ‘‘HTLML: Hybrid AI Based Model for Detection of Alzheimer’s Disease,’’ Diagnostics, vol. 12, no. 8, 2022.
  • [34] S. Sharma, S. Gupta, D. Gupta, S. Juneja, A. Mahmoud, S. El–Sappagh, and K. S. Kwak, ‘‘Transfer learning-based modified inception model for the diagnosis of Alzheimer’s disease,’’ Frontiers in Computational Neuroscience, vol. 16, 2022.
  • [35] M. G. Hussain and Y. Shiren, ‘‘Identifying Alzheimer Disease Dementia Levels Using Machine Learning Methods,’’ Medical Research Archives, vol. 11, no. 7.1, nov 2023.
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik Uygulaması
Bölüm Research Articles
Yazarlar

İclal Çetin Taş 0000-0002-1101-9773

Murat Şimşek 0000-0002-8648-3693

Yayımlanma Tarihi 31 Ocak 2025
Gönderilme Tarihi 8 Temmuz 2024
Kabul Tarihi 24 Aralık 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 12 Sayı: 1

Kaynak Göster

IEEE İ. Çetin Taş ve M. Şimşek, “Classification of Dementia Levels by Using Different Convolutional Neural Network Architectures”, ECJSE, c. 12, sy. 1, ss. 74–85, 2025.