Araştırma Makalesi
BibTex RIS Kaynak Göster

Tea Stem Waste Powders for Epoxy-Based Composites: Processing, Mechanical Properties, and Fracture Behavior

Yıl 2025, Cilt: 12 Sayı: 3, 235 - 248, 30.09.2025
https://doi.org/10.31202/ecjse.1766935

Öz

This study investigates the potential of mechanically processed tea stem waste powders as an environmentally friendly reinforcement for epoxy-based composites. Tea stem waste, a lignocellulosic byproduct of tea processing, was reduced in size by high-speed mixing and planetary ball milling without any chemical pretreatment, and incorporated into an epoxy system at varying weight fractions (1–10 wt.%). The composites were fabricated under controlled conditions and subjected to tensile, fracture toughness, hardness, thermal, and morphological evaluations. Mechanical testing revealed that tensile strength increased with filler loading up to an optimum of 7.5 wt.% (72.16 MPa), corresponding to a 14.8% improvement over neat epoxy, while higher content(10 wt.%) showed minor reduction due to potential filler agglomeration. The elastic modulus displayed a non-linear trend, decreasing slightly at low filler levels but reaching 1.30 GPa at 10 wt.%. Fracture toughness (Kıc) exhibited a continuous increase, with a maximum of 2,41 MPa√m at 10 wt.%—a 26.4% improvement compared to neat epoxy. Shore D hardness also improved progressively, with up to a 23% increase at the highest filler content. Thermal analysis confirmed that the addition of tea stem powder did not significantly affect the glass transition or initial degradation temperatures, while an increased char yield indicated enhanced thermal stability. FE-SEM fractography showed that fiber orientation strongly influenced crack propagation: longitudinal fibers remained intact, while transverse fibers fragmented and dissipated energy, thereby enhancing fracture resistance. These results confirm that tea stem waste powders, processed solely by mechanical means, can effectively reinforce epoxy matrices. Although samples made with 7.5% filler yield the best results in tensile testing, it has been observed that 10% content yields higher results in fracture toughness and hardness tests. The results of the study showed that the mechanical strength of the composite material made from this tea stem waste was higher than that of pure epoxy in all content variations tested here.

Kaynakça

  • [1] N. Singh, O. A. Ogunseitan, M. H. Wong, and Y. Tang, “Sustainable materials alternative to petrochemical plastics pollution: A review analysis,” Sustainable Horizons, vol. 2, p. 100016, Mar. 2022, doi: 10.1016/j.horiz.2022.100016.
  • [2] T. Khan, M. T. B. Hameed Sultan, and A. H. Ariffin, “The challenges of natural fiber in manufacturing, material selection, and technology application: A review,” Journal of Reinforced Plastics and Composites, vol. 37, no. 11, pp. 770–779, June 2018, doi: 10.1177/0731684418756762.
  • [3] S. H. Mousavi-Avval, K. Sahoo, P. Nepal, T. Runge, and R. Bergman, “Environmental impacts and techno-economic assessments of biobased products: A review,” Renewable and Sustainable Energy Reviews, vol. 180, p. 113302, July 2023, doi: 10.1016/j.rser.2023.113302.
  • [4] K. Karthik et al., “State of the Art: Natural fibre-reinforced composites in advanced development and their physical/chemical/mechanical properties,” Chinese Journal of Analytical Chemistry, vol. 52, no. 7, p. 100415, July 2024, doi: 10.1016/j.cjac.2024.100415.
  • [5] R. A. Khan, “A Review on the Properties of Natural Fibers and Manufacturing Techniques of Fiber Reinforced Biocomposites,” MCMS, vol. 4, no. 4, Nov. 2021, doi: 10.33552/MCMS.2021.04.000592.
  • [6] F. M. L. Rekbi et al., “Ultrasonic Characterization of the Mechanical Behavior of Epoxy/Date Kernel Powder Biocomposites: A Feasibility Study of the Powder Size Effect,” ECJSE, vol. 12, no. 2, pp. 176–190, May 2025, doi: 10.31202/ecjse.1572805.
  • [7] V. Sekar, M. H. Fouladi, S. N. Namasivayam, and S. Sivanesan, “Additive Manufacturing: A Novel Method for Developing an Acoustic Panel Made of Natural Fiber-Reinforced Composites with Enhanced Mechanical and Acoustical Properties,” Journal of Engineering, vol. 2019, pp. 1–19, Sept. 2019, doi: 10.1155/2019/4546863.
  • [8] S. Gokulkumar, P. Thyla, L. Prabhu, and S. Sathish, “Characterization and Comparative Analysis on Mechanical and Acoustical Properties of Camellia Sinensis/Ananas Comosus/ Glass Fiber Hybrid Polymer Composites,” Journal of Natural Fibers, vol. 18, no. 7, pp. 978–994, July 2021, doi: 10.1080/15440478.2019.1675215.
  • [9] R. H. Hu, M. H. Jang, Y. J. Kim, Y. J. Piao, and J. K. Lim, “Fully Degradable Jute Fiber Reinforced Polylactide Composites Applicable to Car Interior Panel,” AMR, vol. 123–125, pp. 1151–1154, Aug. 2010, doi: 10.4028/www.scientific.net/AMR.123-125.1151.
  • [10] C. Alves et al., “Ecodesign of automotive components making use of natural jute fiber composites,” Journal of Cleaner Production, vol. 18, no. 4, pp. 313–327, Mar. 2010, doi: 10.1016/j.jclepro.2009.10.022.
  • [11] G. Thilagavathi, E. Pradeep, T. Kannaian, and L. Sasikala, “Development of Natural Fiber Nonwovens for Application as Car Interiors for Noise Control,” Journal of Industrial Textiles, vol. 39, no. 3, pp. 267–278, Jan. 2010, doi: 10.1177/1528083709347124.
  • [12] T. Aziz et al., “The epoxy resin system: function and role of curing agents,” Carbon Lett., vol. 34, no. 1, pp. 477–494, Jan. 2024, doi: 10.1007/s42823-023-00547-7.
  • [13] N. Saba, M. Jawaid, O. Y. Alothman, M. Paridah, and A. Hassan, “Recent advances in epoxy resin, natural fiberreinforced epoxy composites and their applications,” Journal of Reinforced Plastics and Composites, vol. 35, no. 6, pp. 447–470, Mar. 2016, doi: 10.1177/0731684415618459.
  • [14] C. Czaderski, E. Martinelli, J. Michels, and M. Motavalli, “Effect of curing conditions on strength development in an epoxy resin for structural strengthening,” Composites Part B: Engineering, vol. 43, no. 2, pp. 398–410, Mar. 2012, doi: 10.1016/j.compositesb.2011.07.006.
  • [15] S. Kumar, S. Krishnan, S. Mohanty, and S. K. Nayak, “Synthesis and characterization of petroleum and biobased epoxy resins: a review,” Polymer International, vol. 67, no. 7, pp. 815–839, July 2018, doi: 10.1002/pi.5575.
  • [16] R. Kumar, A. Ganguly, and R. Purohit, “Thermogravimetric analysis of natural fiber reinforced hybrid composites – A review,” Materials Today: Proceedings, p. S221478532304275X, Aug. 2023, doi: 10.1016/j.matpr.2023.08.025.
  • [17] D. Sundeep and E. K. Varadharaj, “Mechanical and spectroscopic characterization of functionalized g-C3N4 fillers loaded epoxy reinforced banana natural Fiber composite for PCB applications,” J Polym Res, vol. 31, no. 12, p. 368, Dec. 2024, doi: 10.1007/s10965-024-04218-7.
  • [18] M. S. Senthil Kumar, L. Rajeshkumar, S. M. Rangappa, and S. Siengchin, “Mechanical behaviour analysis for banana/coir natural fiber hybrid epoxy composites through experimental modelling,” J Polym Res, vol. 31, no. 6, p. 163, June 2024, doi: 10.1007/s10965-024-04018-z.
  • [19] Y. Tasgin, G. Demircan, S. Kandemir, and A. Acikgoz, “Mechanical, wear and thermal properties of natural fiberreinforced epoxy composite: cotton, sisal, coir and wool fibers,” J Mater Sci, vol. 59, no. 24, pp. 10844–10857, June 2024, doi: 10.1007/s10853-024-09810-2.
  • [20] M. K. A. Khan, M. Faisal, and V. R. Arun Prakash, “Damage investigations on natural fiber-epoxy human prosthetic composites toughened using echinoidea spike β-chitin biopolymer,” Biomass Conv. Bioref., vol. 15, no. 4, pp. 6175–6185, Feb. 2025, doi: 10.1007/s13399-024-05421-8.
  • [21] R. A. Gandhi, V. Jayaseelan, S. Sambath, and V. Suyamburajan, “Production and characterization of epoxy based biocomposites using pectin biopolymer derived from Passiflora edulis husk and areca fibre,” Polym. Bull., Aug. 2025, doi: 10.1007/s00289-025-05968-0.
  • [22] J. K. Singh and A. K. Rout, “Study on the physical, mechanical, and thermal behaviour of RHN blend epoxy hybrid composites reinforced by Borassus flabellifer L. fibers,” Cellulose, vol. 30, no. 8, pp. 5033–5049, May 2023, doi: 10.1007/s10570-023-05191-y.
  • [23] Z. Wang, W. Ahmad, A. Zhu, S. Zhao, Q. Ouyang, and Q. Chen, “Recent advances review in tea waste: High-value applications, processing technology, and value-added products,” Science of The Total Environment, vol. 946, p. 174225, Oct. 2024, doi: 10.1016/j.scitotenv.2024.174225.
  • [24] Ş. Efe, “Industrial Tea Waste and Energy Potential,” Jan. 2025, doi: 10.5281/ZENODO.14670859.
  • [25] A. Donmez Cavdar, H. Kalaycioglu, and F. Mengeloğlu, “Technological properties of thermoplastic composites filled with fire retardant and tea mill waste fiber,” Journal of Composite Materials, vol. 50, no. 12, pp. 1627–1634, May 2016, doi: 10.1177/0021998315595113.
  • [26] N. Borah and N. Karak, “Green composites of bio-based epoxy and waste tea fiber as environmentally friendly structural materials,” Journal of Macromolecular Science, Part A, vol. 60, no. 3, pp. 217–229, Mar. 2023, doi: 10.1080/10601325.2023.2177171.
  • [27] F. Zhao, W. Guo, X. Liu, J. Zhao, and T. Feng, “Injection molded lightweight composites from tea-stem fiber and polypropylene: Effect of fiber loading on forming properties and cell structure,” Industrial Crops and Products, vol. 221, p. 119372, Dec. 2024, doi: 10.1016/j.indcrop.2024.119372.
  • [28] L. Prabhu, V. Krishnaraj, S. Gokulkumar, S. Sathish, and M. Ramesh, “Mechanical, Chemical and Acoustical Behavior of Sisal – Tea Waste – Glass Fiber Reinforced Epoxy Based Hybrid Polymer Composites,” Materials Today: Proceedings, vol. 16, pp. 653–660, 2019, doi: 10.1016/j.matpr.2019.05.142.
  • [29] H. Aftab, G. M. S. Rahman, Md. Kamruzzaman, M. A. Khan, Md. F. Ali, and M. A. A. Mamun, “Physico-Mechanical Properties of Industrial Tea Waste Reinforced Jute Unsaturated Polyester Composites,” J. eng. adv., pp. 42–49, June 2022, doi: 10.38032/jea.2022.02.001.
  • [30] N. Sharma, B. J. Allardyce, R. Rajkhowa, and R. Agrawal, “Rice straw-derived cellulose: a comparative study of various pre-treatment technologies and its conversion to nanofibres,” Sci Rep, vol. 13, no. 1, p. 16327, Sept. 2023, doi: 10.1038/s41598-023-43535-7.
  • [31] R. Gallego et al., “Green approach for the activation and functionalization of jute fibers through ball milling,” Cellulose, vol. 27, no. 2, pp. 643–656, Jan. 2020, doi: 10.1007/s10570-019-02831-0.
  • [32] Y. K. Verma, A. K. Singh, M. K. Paswan, and P. K. Gurmaita, “Preparation and characterization of bamboo based nanocellulose by ball milling and used as a filler for preparation of nanocomposite,” Polymer, vol. 308, p. 127396, Aug. 2024, doi: 10.1016/j.polymer.2024.127396.
  • [33] N. Jayarambabu, L. S. Rao, A. Akshaykranth, T. V. Rao, and R. R. Kumar, “Study of optical and structural properties of natural bamboo fiber powder prepared by ball milling method,” Eur. Phys. J. Plus, vol. 136, no. 10, p. 989, Oct. 2021, doi: 10.1140/epjp/s13360-021-01932-9.
  • [34] ASTM D20 Committee, Test Method for Tensile Properties of Plastics. doi: 10.1520/D0638-14.
  • [35] ASTM D20 Committee, Test Methods for Plane-Strain Fracture Toughness and Strain Energy Release Rate of Plastic Materials. doi: 10.1520/D5045-14.
  • [36] ASTM D11 Committee, Test Method for Rubber Property--Durometer Hardness. doi: 10.1520/D2240-15.
  • [37] H. Y. Sastra, J. P. Siregar, S. M. Sapuan, and M. M. Hamdan, “Tensile Properties of Arenga pinnata Fiber-Reinforced Epoxy Composites,” Polymer-Plastics Technology and Engineering, vol. 45, no. 1, pp. 149–155, Feb. 2006, doi: 10.1080/03602550500374038.
  • [38] R. M. N. Arib, S. M. Sapuan, M. M. H. M. Ahmad, M. T. Paridah, and H. M. D. K. Zaman, “Mechanical properties of pineapple leaf fibre reinforced polypropylene composites,” Materials & Design, vol. 27, no. 5, pp. 391–396, Jan. 2006, doi: 10.1016/j.matdes.2004.11.009.
  • [39] N. L. Ravikumar and D. Sunil, “THE EFFECT OF A STARCH ENVELOPE ON FLY ASH PARTICLES ON THE IMPACT PROPERTIES OF FILLED EPOXY COMP0SITES,” Advanced Composites Letters, 2003.
  • [40] J. Fan, J. Yang, H. Li, J. Tian, M. Wang, and Y. Zhao, “Cryogenic mechanical properties of graphene oxide/epoxy nanocomposites: Influence of graphene oxide with different oxidation degrees,” Polymer Testing, vol. 96, p. 107074, Apr. 2021, doi: 10.1016/j.polymertesting.2021.107074.
  • [41] X. Yao, I. A. Kinloch, and M. A. Bissett, “Fabrication and Mechanical Performance of Graphene Nanoplatelet/Glass Fiber Reinforced Polymer Hybrid Composites,” Front. Mater., vol. 8, p. 773343, Nov. 2021, doi: 10.3389/fmats.2021.773343.
  • [42] S. Kumar, L. Prasad, P. P. Bijlwan, and A. Yadav, “Thermogravimetric analysis of lignocellulosic leaf-based fiberreinforced thermosets polymer composites: an overview,” Biomass Conv. Bioref., vol. 14, no. 12, pp. 12673–12698, June 2024, doi: 10.1007/s13399-022-03332-0.
  • [43] N. M. Nurazzi et al., “Thermogravimetric Analysis Properties of Cellulosic Natural Fiber Polymer Composites: A Review on Influence of Chemical Treatments,” Polymers, vol. 13, no. 16, p. 2710, Aug. 2021, doi: 10.3390/polym13162710.
  • [44] Y. Kim, S. Lee, and H. Yoon, “Fire-Safe Polymer Composites: Flame-Retardant Effect of Nanofillers,” Polymers, vol. 13, no. 4, p. 540, Feb. 2021, doi: 10.3390/polym13040540.
  • [45] E. Madyaratri et al., “Recent Advances in the Development of Fire-Resistant Biocomposites—A Review,” Polymers, vol. 14, no. 3, p. 362, Jan. 2022, doi: 10.3390/polym14030362.

Epoksi Bazlı Kompozitler için Çay Sapı Atık Tozları: İşleme, Mekanik Özellikler ve Kırılma Davranışı

Yıl 2025, Cilt: 12 Sayı: 3, 235 - 248, 30.09.2025
https://doi.org/10.31202/ecjse.1766935

Öz

Bu çalışma, çay işleme sürecinin lignoselülozik bir yan ürünü olan çay sapı atığı tozlarının epoksi esaslı kompozitlerde çevre dostu takviye malzemesi olarak kullanım potansiyelini araştırmaktadır. Atık çay sapları herhangi bir kimyasal ön işlem uygulanmadan yüksek hızlı karıştırma ve planet değirmenle inceltilmiş ve %1–10 (ağ.%) oranlarında epoksi matrisine eklenmiştir. Üretilen kompozitler çekme, kırılma tokluğu, sertlik, termal ve morfolojik testlere tabi tutulmuştur. Deneysel sonuçlar, çekme dayanımının %7,5 dolgu oranında (72,16 MPa) saf epoksiye kıyasla %14,8 artış gösterdiğini, kırılma tokluğunun ise %10 dolgu oranında 2,41 MPa√m ile %26,4 iyileştiğini ortaya koymuştur. Shore D sertliği en yüksek dolgu oranında %23 artış göstermiştir. Termal analizler, camsı geçiş ve bozunma sıcaklıklarının büyük ölçüde korunmasına rağmen artan kömürleşme miktarının termal kararlılığı güçlendirdiğini göstermiştir. FE-SEM kırılma yüzey analizleri, lif yöneliminin çatlak ilerlemesi üzerinde belirleyici olduğunu; boyuna liflerin bütünlüğünü koruduğunu, enine liflerin ise parçalanarak enerji dağılımını artırdığını ortaya koymuştur. Elde edilen bulgular, yalnızca mekanik yollarla işlenen çay sapı atığı tozlarının epoksi matrislerini etkili biçimde güçlendirebildiğini göstermektedir. Özellikle %7,5 dolgu oranı çekme testlerinde en iyi sonuçları verirken, %10 içerikte kırılma tokluğu ve sertlik özellikleri daha yüksek bulunmuştur.

Kaynakça

  • [1] N. Singh, O. A. Ogunseitan, M. H. Wong, and Y. Tang, “Sustainable materials alternative to petrochemical plastics pollution: A review analysis,” Sustainable Horizons, vol. 2, p. 100016, Mar. 2022, doi: 10.1016/j.horiz.2022.100016.
  • [2] T. Khan, M. T. B. Hameed Sultan, and A. H. Ariffin, “The challenges of natural fiber in manufacturing, material selection, and technology application: A review,” Journal of Reinforced Plastics and Composites, vol. 37, no. 11, pp. 770–779, June 2018, doi: 10.1177/0731684418756762.
  • [3] S. H. Mousavi-Avval, K. Sahoo, P. Nepal, T. Runge, and R. Bergman, “Environmental impacts and techno-economic assessments of biobased products: A review,” Renewable and Sustainable Energy Reviews, vol. 180, p. 113302, July 2023, doi: 10.1016/j.rser.2023.113302.
  • [4] K. Karthik et al., “State of the Art: Natural fibre-reinforced composites in advanced development and their physical/chemical/mechanical properties,” Chinese Journal of Analytical Chemistry, vol. 52, no. 7, p. 100415, July 2024, doi: 10.1016/j.cjac.2024.100415.
  • [5] R. A. Khan, “A Review on the Properties of Natural Fibers and Manufacturing Techniques of Fiber Reinforced Biocomposites,” MCMS, vol. 4, no. 4, Nov. 2021, doi: 10.33552/MCMS.2021.04.000592.
  • [6] F. M. L. Rekbi et al., “Ultrasonic Characterization of the Mechanical Behavior of Epoxy/Date Kernel Powder Biocomposites: A Feasibility Study of the Powder Size Effect,” ECJSE, vol. 12, no. 2, pp. 176–190, May 2025, doi: 10.31202/ecjse.1572805.
  • [7] V. Sekar, M. H. Fouladi, S. N. Namasivayam, and S. Sivanesan, “Additive Manufacturing: A Novel Method for Developing an Acoustic Panel Made of Natural Fiber-Reinforced Composites with Enhanced Mechanical and Acoustical Properties,” Journal of Engineering, vol. 2019, pp. 1–19, Sept. 2019, doi: 10.1155/2019/4546863.
  • [8] S. Gokulkumar, P. Thyla, L. Prabhu, and S. Sathish, “Characterization and Comparative Analysis on Mechanical and Acoustical Properties of Camellia Sinensis/Ananas Comosus/ Glass Fiber Hybrid Polymer Composites,” Journal of Natural Fibers, vol. 18, no. 7, pp. 978–994, July 2021, doi: 10.1080/15440478.2019.1675215.
  • [9] R. H. Hu, M. H. Jang, Y. J. Kim, Y. J. Piao, and J. K. Lim, “Fully Degradable Jute Fiber Reinforced Polylactide Composites Applicable to Car Interior Panel,” AMR, vol. 123–125, pp. 1151–1154, Aug. 2010, doi: 10.4028/www.scientific.net/AMR.123-125.1151.
  • [10] C. Alves et al., “Ecodesign of automotive components making use of natural jute fiber composites,” Journal of Cleaner Production, vol. 18, no. 4, pp. 313–327, Mar. 2010, doi: 10.1016/j.jclepro.2009.10.022.
  • [11] G. Thilagavathi, E. Pradeep, T. Kannaian, and L. Sasikala, “Development of Natural Fiber Nonwovens for Application as Car Interiors for Noise Control,” Journal of Industrial Textiles, vol. 39, no. 3, pp. 267–278, Jan. 2010, doi: 10.1177/1528083709347124.
  • [12] T. Aziz et al., “The epoxy resin system: function and role of curing agents,” Carbon Lett., vol. 34, no. 1, pp. 477–494, Jan. 2024, doi: 10.1007/s42823-023-00547-7.
  • [13] N. Saba, M. Jawaid, O. Y. Alothman, M. Paridah, and A. Hassan, “Recent advances in epoxy resin, natural fiberreinforced epoxy composites and their applications,” Journal of Reinforced Plastics and Composites, vol. 35, no. 6, pp. 447–470, Mar. 2016, doi: 10.1177/0731684415618459.
  • [14] C. Czaderski, E. Martinelli, J. Michels, and M. Motavalli, “Effect of curing conditions on strength development in an epoxy resin for structural strengthening,” Composites Part B: Engineering, vol. 43, no. 2, pp. 398–410, Mar. 2012, doi: 10.1016/j.compositesb.2011.07.006.
  • [15] S. Kumar, S. Krishnan, S. Mohanty, and S. K. Nayak, “Synthesis and characterization of petroleum and biobased epoxy resins: a review,” Polymer International, vol. 67, no. 7, pp. 815–839, July 2018, doi: 10.1002/pi.5575.
  • [16] R. Kumar, A. Ganguly, and R. Purohit, “Thermogravimetric analysis of natural fiber reinforced hybrid composites – A review,” Materials Today: Proceedings, p. S221478532304275X, Aug. 2023, doi: 10.1016/j.matpr.2023.08.025.
  • [17] D. Sundeep and E. K. Varadharaj, “Mechanical and spectroscopic characterization of functionalized g-C3N4 fillers loaded epoxy reinforced banana natural Fiber composite for PCB applications,” J Polym Res, vol. 31, no. 12, p. 368, Dec. 2024, doi: 10.1007/s10965-024-04218-7.
  • [18] M. S. Senthil Kumar, L. Rajeshkumar, S. M. Rangappa, and S. Siengchin, “Mechanical behaviour analysis for banana/coir natural fiber hybrid epoxy composites through experimental modelling,” J Polym Res, vol. 31, no. 6, p. 163, June 2024, doi: 10.1007/s10965-024-04018-z.
  • [19] Y. Tasgin, G. Demircan, S. Kandemir, and A. Acikgoz, “Mechanical, wear and thermal properties of natural fiberreinforced epoxy composite: cotton, sisal, coir and wool fibers,” J Mater Sci, vol. 59, no. 24, pp. 10844–10857, June 2024, doi: 10.1007/s10853-024-09810-2.
  • [20] M. K. A. Khan, M. Faisal, and V. R. Arun Prakash, “Damage investigations on natural fiber-epoxy human prosthetic composites toughened using echinoidea spike β-chitin biopolymer,” Biomass Conv. Bioref., vol. 15, no. 4, pp. 6175–6185, Feb. 2025, doi: 10.1007/s13399-024-05421-8.
  • [21] R. A. Gandhi, V. Jayaseelan, S. Sambath, and V. Suyamburajan, “Production and characterization of epoxy based biocomposites using pectin biopolymer derived from Passiflora edulis husk and areca fibre,” Polym. Bull., Aug. 2025, doi: 10.1007/s00289-025-05968-0.
  • [22] J. K. Singh and A. K. Rout, “Study on the physical, mechanical, and thermal behaviour of RHN blend epoxy hybrid composites reinforced by Borassus flabellifer L. fibers,” Cellulose, vol. 30, no. 8, pp. 5033–5049, May 2023, doi: 10.1007/s10570-023-05191-y.
  • [23] Z. Wang, W. Ahmad, A. Zhu, S. Zhao, Q. Ouyang, and Q. Chen, “Recent advances review in tea waste: High-value applications, processing technology, and value-added products,” Science of The Total Environment, vol. 946, p. 174225, Oct. 2024, doi: 10.1016/j.scitotenv.2024.174225.
  • [24] Ş. Efe, “Industrial Tea Waste and Energy Potential,” Jan. 2025, doi: 10.5281/ZENODO.14670859.
  • [25] A. Donmez Cavdar, H. Kalaycioglu, and F. Mengeloğlu, “Technological properties of thermoplastic composites filled with fire retardant and tea mill waste fiber,” Journal of Composite Materials, vol. 50, no. 12, pp. 1627–1634, May 2016, doi: 10.1177/0021998315595113.
  • [26] N. Borah and N. Karak, “Green composites of bio-based epoxy and waste tea fiber as environmentally friendly structural materials,” Journal of Macromolecular Science, Part A, vol. 60, no. 3, pp. 217–229, Mar. 2023, doi: 10.1080/10601325.2023.2177171.
  • [27] F. Zhao, W. Guo, X. Liu, J. Zhao, and T. Feng, “Injection molded lightweight composites from tea-stem fiber and polypropylene: Effect of fiber loading on forming properties and cell structure,” Industrial Crops and Products, vol. 221, p. 119372, Dec. 2024, doi: 10.1016/j.indcrop.2024.119372.
  • [28] L. Prabhu, V. Krishnaraj, S. Gokulkumar, S. Sathish, and M. Ramesh, “Mechanical, Chemical and Acoustical Behavior of Sisal – Tea Waste – Glass Fiber Reinforced Epoxy Based Hybrid Polymer Composites,” Materials Today: Proceedings, vol. 16, pp. 653–660, 2019, doi: 10.1016/j.matpr.2019.05.142.
  • [29] H. Aftab, G. M. S. Rahman, Md. Kamruzzaman, M. A. Khan, Md. F. Ali, and M. A. A. Mamun, “Physico-Mechanical Properties of Industrial Tea Waste Reinforced Jute Unsaturated Polyester Composites,” J. eng. adv., pp. 42–49, June 2022, doi: 10.38032/jea.2022.02.001.
  • [30] N. Sharma, B. J. Allardyce, R. Rajkhowa, and R. Agrawal, “Rice straw-derived cellulose: a comparative study of various pre-treatment technologies and its conversion to nanofibres,” Sci Rep, vol. 13, no. 1, p. 16327, Sept. 2023, doi: 10.1038/s41598-023-43535-7.
  • [31] R. Gallego et al., “Green approach for the activation and functionalization of jute fibers through ball milling,” Cellulose, vol. 27, no. 2, pp. 643–656, Jan. 2020, doi: 10.1007/s10570-019-02831-0.
  • [32] Y. K. Verma, A. K. Singh, M. K. Paswan, and P. K. Gurmaita, “Preparation and characterization of bamboo based nanocellulose by ball milling and used as a filler for preparation of nanocomposite,” Polymer, vol. 308, p. 127396, Aug. 2024, doi: 10.1016/j.polymer.2024.127396.
  • [33] N. Jayarambabu, L. S. Rao, A. Akshaykranth, T. V. Rao, and R. R. Kumar, “Study of optical and structural properties of natural bamboo fiber powder prepared by ball milling method,” Eur. Phys. J. Plus, vol. 136, no. 10, p. 989, Oct. 2021, doi: 10.1140/epjp/s13360-021-01932-9.
  • [34] ASTM D20 Committee, Test Method for Tensile Properties of Plastics. doi: 10.1520/D0638-14.
  • [35] ASTM D20 Committee, Test Methods for Plane-Strain Fracture Toughness and Strain Energy Release Rate of Plastic Materials. doi: 10.1520/D5045-14.
  • [36] ASTM D11 Committee, Test Method for Rubber Property--Durometer Hardness. doi: 10.1520/D2240-15.
  • [37] H. Y. Sastra, J. P. Siregar, S. M. Sapuan, and M. M. Hamdan, “Tensile Properties of Arenga pinnata Fiber-Reinforced Epoxy Composites,” Polymer-Plastics Technology and Engineering, vol. 45, no. 1, pp. 149–155, Feb. 2006, doi: 10.1080/03602550500374038.
  • [38] R. M. N. Arib, S. M. Sapuan, M. M. H. M. Ahmad, M. T. Paridah, and H. M. D. K. Zaman, “Mechanical properties of pineapple leaf fibre reinforced polypropylene composites,” Materials & Design, vol. 27, no. 5, pp. 391–396, Jan. 2006, doi: 10.1016/j.matdes.2004.11.009.
  • [39] N. L. Ravikumar and D. Sunil, “THE EFFECT OF A STARCH ENVELOPE ON FLY ASH PARTICLES ON THE IMPACT PROPERTIES OF FILLED EPOXY COMP0SITES,” Advanced Composites Letters, 2003.
  • [40] J. Fan, J. Yang, H. Li, J. Tian, M. Wang, and Y. Zhao, “Cryogenic mechanical properties of graphene oxide/epoxy nanocomposites: Influence of graphene oxide with different oxidation degrees,” Polymer Testing, vol. 96, p. 107074, Apr. 2021, doi: 10.1016/j.polymertesting.2021.107074.
  • [41] X. Yao, I. A. Kinloch, and M. A. Bissett, “Fabrication and Mechanical Performance of Graphene Nanoplatelet/Glass Fiber Reinforced Polymer Hybrid Composites,” Front. Mater., vol. 8, p. 773343, Nov. 2021, doi: 10.3389/fmats.2021.773343.
  • [42] S. Kumar, L. Prasad, P. P. Bijlwan, and A. Yadav, “Thermogravimetric analysis of lignocellulosic leaf-based fiberreinforced thermosets polymer composites: an overview,” Biomass Conv. Bioref., vol. 14, no. 12, pp. 12673–12698, June 2024, doi: 10.1007/s13399-022-03332-0.
  • [43] N. M. Nurazzi et al., “Thermogravimetric Analysis Properties of Cellulosic Natural Fiber Polymer Composites: A Review on Influence of Chemical Treatments,” Polymers, vol. 13, no. 16, p. 2710, Aug. 2021, doi: 10.3390/polym13162710.
  • [44] Y. Kim, S. Lee, and H. Yoon, “Fire-Safe Polymer Composites: Flame-Retardant Effect of Nanofillers,” Polymers, vol. 13, no. 4, p. 540, Feb. 2021, doi: 10.3390/polym13040540.
  • [45] E. Madyaratri et al., “Recent Advances in the Development of Fire-Resistant Biocomposites—A Review,” Polymers, vol. 14, no. 3, p. 362, Jan. 2022, doi: 10.3390/polym14030362.
Toplam 45 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik Tasarımı, Mühendislik Uygulaması
Bölüm Araştırma Makaleleri
Yazarlar

Hüseyin Kaya 0000-0002-2714-8481

Mürsel Ekrem 0000-0001-5324-7929

Yasin Uslugil 0000-0002-7077-2300

Yayımlanma Tarihi 30 Eylül 2025
Gönderilme Tarihi 16 Ağustos 2025
Kabul Tarihi 30 Eylül 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 12 Sayı: 3

Kaynak Göster

IEEE H. Kaya, M. Ekrem, ve Y. Uslugil, “Tea Stem Waste Powders for Epoxy-Based Composites: Processing, Mechanical Properties, and Fracture Behavior”, ECJSE, c. 12, sy. 3, ss. 235–248, 2025, doi: 10.31202/ecjse.1766935.