Ainsley Reid, A., Vuillemard, J. C., Britten, M., Arcand, Y., Farnworth, E., & Champagne, C. P. (2005). Microentrapment of probiotic bacteria in a Ca(2+)-induced whey protein gel and effects on their viability in a dynamic gastro-intestinal model. J Microencapsul, 22(6), 603-619. doi:10.1080/02652040500162840
Anekella, K., & Orsat, V. (2013). Optimization of microencapsulation of probiotics in raspberry juice by spray drying. LWT - Food Science and Technology, 50(1), 17-24. doi:10.1016/j.lwt.2012.08.003
Annan, N. T., Borza, A. D., & Hansen, L. T. (2008). Encapsulation in alginate-coated gelatin microspheres improves survival of the probiotic Bifidobacterium adolescentis 15703T during exposure to simulated gastro-intestinal conditions. Food Research International, 41(2), 184-193. doi:10.1016/j.foodres.2007.11.001
Arepally, D., & Goswami, T. K. (2019). Effect of inlet air temperature and gum Arabic concentration on encapsulation of probiotics by spray drying. LWT - Food Science and Technology, 99, 583-593. doi:10.1016/j.lwt.2018.10.022
Arslan, S., Erbas, M., Tontul, I., & Topuz, A. (2015). Microencapsulation of probiotic Saccharomyces cerevisiae var. boulardii with different wall materials by spray drying. LWT - Food Science and Technology, 63(1), 685-690. doi:10.1016/j.lwt.2015.03.034
Atalar, I., & Dervisoglu, M. (2015). Optimization of spray drying process parameters for kefir powder using response surface methodology. LWT - Food Science and Technology, 60(2), 751-757. doi:10.1016/j.lwt.2014.10.023
Behboudi-Jobbehdar, S., Soukoulis, C., Yonekura, L., & Fisk, I. (2013). Optimization of Spray-Drying Process Conditions for the Production of Maximally Viable MicroencapsulatedL. acidophilusNCIMB 701748. Drying Technology, 31(11), 1274-1283. doi:10.1080/07373937.2013.788509
Broeckx, G., Vandenheuvel, D., Henkens, T., Kiekens, S., van den Broek, M. F. L., Lebeer, S., & Kiekens, F. (2017). Enhancing the viability of Lactobacillus rhamnosus GG after spray drying and during storage. International Journal of Pharmaceutics, 534(1-2), 35-41. doi:10.1016/j.ijpharm.2017.09.075
Burgain, J., Gaiani, C., Cailliez-Grimal, C., Jeandel, C., & Scher, J. (2013). Encapsulation of Lactobacillus rhamnosus GG in microparticles: Influence of casein to whey protein ratio on bacterial survival during digestion. Innovative Food Science & Emerging Technologies, 19, 233-242. doi:10.1016/j.ifset.2013.04.012
Chegini, G. R., & Ghobadian, B. (2007). Spray dryer parameters for fruit juice drying. World Journal of Agricultural Sciences, 3(2), 230-236.
Dave, R. I., & Shah, N. P. (1997). Viability of yoghurt and probiotic bacteria in yoghurts made from commercial starter cultures. International Dairy Journal, 7(1), 31-41.
De Castro-Cislaghi, F. P., Silva, C. D. R. E., Fritzen-Freire, C. B., Lorenz, J. G., & Sant’Anna, E. S. (2012). Bifidobacterium Bb-12 microencapsulated by spray drying with whey: Survival under simulated gastrointestinal conditions, tolerance to NaCl, and viability during storage. Journal of Food Engineering, 113(2), 186-193. doi:10.1016/j.jfoodeng.2012.06.006
Dimitrellou, D., Kandylis, P., Petrović, T., Dimitrijević-Branković, S., Lević, S., Nedović, V., & Kourkoutas, Y. (2016). Survival of spray dried microencapsulated Lactobacillus casei ATCC 393 in simulated gastrointestinal conditions and fermented milk. LWT - Food Science and Technology, 71, 169-174. doi:10.1016/j.lwt.2016.03.007
Fritzen-Freire, C. B., Prudêncio, E. S., Amboni, R. D. M. C., Pinto, S. S., Negrão-Murakami, A. N., & Murakami, F. S. (2012). Microencapsulation of bifidobacteria by spray drying in the presence of prebiotics. Food Research International, 45(1), 306-312. doi:10.1016/j.foodres.2011.09.020
Fritzen-Freire, C. B., Prudêncio, E. S., Pinto, S. S., Muñoz, I. B., & Amboni, R. D. M. C. (2013). Effect of microencapsulation on survival of Bifidobacterium BB-12 exposed to simulated gastrointestinal conditions and heat treatments. LWT - Food Science and Technology, 50(1), 39-44. doi:10.1016/j.lwt.2012.07.037
Goula, A. M., & Adamopoulos, K. G. (2012). A New Technique for Spray-Dried Encapsulation of Lycopene. Drying Technology, 30(6), 641-652. doi:10.1080/07373937.2012.655871
Gul, L. B., Gul, O., Yilmaz, M. T., Dertli, E., & Con, A. H. (2020). Optimization of cryoprotectant formulation to enhance the viability of Lactobacillus brevis ED25: Determination of storage stability and acidification kinetics in sourdough. Journal of Food Processing and Preservation. doi:10.1111/jfpp.14400
Gul, O. (2017). Microencapsulation of Lactobacillus casei Shirota by spray drying using different combinations of wall materials and application for probiotic dairy dessert. Journal of Food Processing and Preservation, 41(5). doi:10.1111/jfpp.13198
Hamilton-Miller, J. M. T., Shah, S., & Winkler, J. T. (1999). Public health issues arising from microbiological and labelling quality of foods and supplements containing probiotic microorganisms. Public Health Nutrition, 2(2), 223-229.
Heidebach, T., Först, P., & Kulozik, U. (2010). Influence of casein-based microencapsulation on freeze-drying and storage of probiotic cells. Journal of Food Engineering, 98(3), 309-316. doi:10.1016/j.jfoodeng.2010.01.003
Hernández-López, Z., Rangel-Vargas, E., Castro-Rosas, J., Gómez-Aldapa, C. A., Cadena-Ramírez, A., Acevedo-Sandoval, O. A., . . . Falfán-Cortés, R. N. (2018). Optimization of a spray-drying process for the production of maximally viable microencapsulated Lactobacillus pentosus using a mixture of starch-pulque as wall material. LWT - Food Science and Technology, 95, 216-222. doi:10.1016/j.lwt.2018.04.075
Ilha, E. C., da Silva, T., Lorenz, J. G., de Oliveira Rocha, G., & Sant’Anna, E. S. (2014). Lactobacillus paracasei isolated from grape sourdough: acid, bile, salt, and heat tolerance after spray drying with skim milk and cheese whey. European Food Research and Technology, 240(5), 977-984. doi:10.1007/s00217-014-2402-x
Jantzen, M., Gopel, A., & Beermann, C. (2013). Direct spray drying and microencapsulation of probiotic Lactobacillus reuteri from slurry fermentation with whey. Journal of Applied Microbiology, 115(4), 1029-1036. doi:10.1111/jam.12293
Kailasapathy, K. (2002). Microencapsulation of probiotic bacteria: technology and potential applications. Current Issues in Intestinal Microbiology, 3, 39-48.
Keivani Nahr, F., Mokarram, R. R., Hejazi, M. A., Ghanbarzadeh, B., Sowti Khiyabani, M., & Zoroufchi Benis, K. (2015). Optimization of the nanocellulose based cryoprotective medium to enhance the viability of freeze dried Lactobacillus plantarum using response surface methodology. LWT - Food Science and Technology, 64(1), 326-332. doi:10.1016/j.lwt.2015.06.004
Khater, K. A. A., Ali, M. A., & Ahmed, E. A. M. (2010). Effect of encapsulation on some probiotic criteria. Journal of American Science, 6(10), 836-845.
Knorr, D. (1998). Technology aspects related to microorganisms in functional food. Trends in Food Science and Technology, 9, 295-306.
Lira de Medeiros, A. C., Thomazini, M., Urbano, A., Pinto Correia, R. T., & Favaro-Trindade, C. S. (2014). Structural characterisation and cell viability of a spray dried probiotic yoghurt produced with goats' milk and Bifidobacterium animalis subsp. lactis (BI-07). International Dairy Journal, 39(1), 71-77. doi:10.1016/j.idairyj.2014.05.008
Malmo, C., La Storia, A., & Mauriello, G. (2011). Microencapsulation of Lactobacillus reuteri DSM 17938 Cells Coated in Alginate Beads with Chitosan by Spray Drying to Use as a Probiotic Cell in a Chocolate Soufflé. Food and Bioprocess Technology, 6(3), 795-805. doi:10.1007/s11947-011-0755-8
Mandal, S., Puniya, A. K., & Singh, K. (2006). Effect of alginate concentrations on survival of microencapsulated Lactobacillus casei NCDC-298. International Dairy Journal, 16(10), 1190-1195. doi:10.1016/j.idairyj.2005.10.005
Martín, M. J., Lara-Villoslada, F., Ruiz, M. A., & Morales, M. E. (2015). Microencapsulation of bacteria: A review of different technologies and their impact on the probiotic effects. Innovative Food Science & Emerging Technologies, 27, 15-25. doi:10.1016/j.ifset.2014.09.010
Moumita, S., Das, B., Hasan, U., & Jayabalan, R. (2018). Effect of long-term storage on viability and acceptability of lyophilized and spray-dried synbiotic microcapsules in dry functional food formulations. Lwt, 96, 127-132. doi:10.1016/j.lwt.2018.05.030
Rajam, R., & Anandharamakrishnan, C. (2015). Microencapsulation of Lactobacillus plantarum (MTCC 5422) with fructooligosaccharide as wall material by spray drying. LWT - Food Science and Technology, 60(2), 773-780. doi:10.1016/j.lwt.2014.09.062
Rajam, R., Karthik, P., Parthasarathi, S., Joseph, G. S., & Anandharamakrishnan, C. (2012). Effect of whey protein – alginate wall systems on survival of microencapsulated Lactobacillus plantarum in simulated gastrointestinal conditions. Journal of Functional Foods, 4(4), 891-898. doi:10.1016/j.jff.2012.06.006
Ranadheera, C. S., Evans, C. A., Adams, M. C., & Baines, S. K. (2015). Microencapsulation of Lactobacillus acidophilus LA-5, Bifidobacterium animalis subsp. lactis BB-12 and Propionibacterium jensenii 702 by spray drying in goat's milk. Small Ruminant Research, 123(1), 155-159. doi:10.1016/j.smallrumres.2014.10.012
Reddy, K. B. P. K., Madhu, A. N., & Prapulla, S. G. (2009). Comparative survival and evaluation of functional probiotic properties of spray-dried lactic acid bacteria. International Journal of Dairy Technology, 62(2), 240-248. doi:10.1111/j.1471-0307.2009.00480.x
Reyes, V., Chotiko, A., Chouljenko, A., Campbell, V., Liu, C., Theegala, C., & Sathivel, S. (2018). Influence of wall material on production of spray dried Lactobacillus plantarum NRRL B-4496 and its viability at different storage conditions. Drying Technology, 36(14), 1738-1748. doi:10.1080/07373937.2017.1423324
Reyes, V., Chotiko, A., Chouljenko, A., & Sathivel, S. (2018). Viability of Lactobacillus acidophilus NRRL B-4495 encapsulated with high maize starch, maltodextrin, and gum arabic. Lwt, 96, 642-647. doi:10.1016/j.lwt.2018.06.017
Savedboworn, W., Kerdwan, N., Sakorn, A., Charoen, R., Tipkanon, S., & Pattayakorn, K. (2017). Role of protective agents on the viability of probiotic Lactobacillus plantarum during freeze drying and subsequent storage. International Food Research Journal, 24(2), 787-794.
Semyonov, D., Ramon, O., Kaplun, Z., Levin-Brener, L., Gurevich, N., & Shimoni, E. (2010). Microencapsulation of Lactobacillus paracasei by spray freeze drying. Food Research International, 43(1), 193-202. doi:10.1016/j.foodres.2009.09.028
Tantratian, S., Wattanaprasert, S., & Suknaisilp, S. (2018). Effect of partial substitution of milk-non-fat with xanthan gum on encapsulation of a probiotic Lactobacillus. Journal of Food Processing and Preservation, 42(7). doi:10.1111/jfpp.13673
Tao, T., Ding, Z., Hou, D., Prakash, S., Zhao, Y., Fan, Z., . . . Han, J. (2019). Influence of polysaccharide as co-encapsulant on powder characteristics, survival and viability of microencapsulated Lactobacillus paracasei Lpc-37 by spray drying. Journal of Food Engineering, 252, 10-17. doi:10.1016/j.jfoodeng.2019.02.009
Tripathi, M. K., & Giri, S. K. (2014). Probiotic functional foods: Survival of probiotics during processing and storage. Journal of Functional Foods, 9, 225-241. doi:10.1016/j.jff.2014.04.030
Xavier dos Santos, D., Casazza, A. A., Aliakbarian, B., Bedani, R., Saad, S. M. I., & Perego, P. (2019). Improved probiotic survival to in vitro gastrointestinal stress in a mousse containing Lactobacillus acidophilus La-5 microencapsulated with inulin by spray drying. LWT - Food Science and Technology, 99, 404-410. doi:10.1016/j.lwt.2018.10.010
Yao, M., Li, B., Ye, H., Huang, W., Luo, Q., Xiao, H., . . . Li, L. (2018). Enhanced viability of probiotics (Pediococcus pentosaceus Li05) by encapsulation in microgels doped with inorganic nanoparticles. Food Hydrocolloids, 83, 246-252. doi:10.1016/j.foodhyd.2018.05.024
Ying, D. Y., Phoon, M. C., Sanguansri, L., Weerakkody, R., Burgar, I., & Augustin, M. A. (2010). Microencapsulated Lactobacillus rhamnosus GG powders: relationship of powder physical properties to probiotic survival during storage. Journal of Food Science, 75(9), E588-595. doi:10.1111/j.1750-3841.2010.01838.x
Optimization of spray drying conditions for microencapsulation of Lactobacillus casei Shirota using response surface methodology
The study aimed to determine the process conditions for microencapsulation of Lactobacillus casei Shirota by spray drying with reconstituted skim milk : gum arabic mix (rate constant 3:1 w/w) as encapsulating agent and to evaluate the physical properties of spray dried powder and the cell stability under gastrointestinal conditions and storage. Air inlet temperature had a major effect on the cell survival, product yield, aw and L* values, but the concentration of feed solution was the only significant factor on product yield, and pump rate effected aw and L* values (P<0.05). According to desirability result (0.812), the model for microencapsulation of probiotic bacteria by spray drying was obtained at following conditions: feed solution concentration of 21.16%, air inlet temperature of 119.55oC and pump rate of 40%. Under optimized conditions, the predicted values close to the experimental values depend on deviation values except aw. The morphological and physicochemical characteristics of the powders produced were acceptable. For the microencapsulated cells, the cell viability was detected as 7.12 log cfu/g after in vitro gastrointestinal treatment. The number of microencapsulated cells decreased by 1.11 and 1.77 log cycles during storage at 4 and 24 oC, respectively.
Ainsley Reid, A., Vuillemard, J. C., Britten, M., Arcand, Y., Farnworth, E., & Champagne, C. P. (2005). Microentrapment of probiotic bacteria in a Ca(2+)-induced whey protein gel and effects on their viability in a dynamic gastro-intestinal model. J Microencapsul, 22(6), 603-619. doi:10.1080/02652040500162840
Anekella, K., & Orsat, V. (2013). Optimization of microencapsulation of probiotics in raspberry juice by spray drying. LWT - Food Science and Technology, 50(1), 17-24. doi:10.1016/j.lwt.2012.08.003
Annan, N. T., Borza, A. D., & Hansen, L. T. (2008). Encapsulation in alginate-coated gelatin microspheres improves survival of the probiotic Bifidobacterium adolescentis 15703T during exposure to simulated gastro-intestinal conditions. Food Research International, 41(2), 184-193. doi:10.1016/j.foodres.2007.11.001
Arepally, D., & Goswami, T. K. (2019). Effect of inlet air temperature and gum Arabic concentration on encapsulation of probiotics by spray drying. LWT - Food Science and Technology, 99, 583-593. doi:10.1016/j.lwt.2018.10.022
Arslan, S., Erbas, M., Tontul, I., & Topuz, A. (2015). Microencapsulation of probiotic Saccharomyces cerevisiae var. boulardii with different wall materials by spray drying. LWT - Food Science and Technology, 63(1), 685-690. doi:10.1016/j.lwt.2015.03.034
Atalar, I., & Dervisoglu, M. (2015). Optimization of spray drying process parameters for kefir powder using response surface methodology. LWT - Food Science and Technology, 60(2), 751-757. doi:10.1016/j.lwt.2014.10.023
Behboudi-Jobbehdar, S., Soukoulis, C., Yonekura, L., & Fisk, I. (2013). Optimization of Spray-Drying Process Conditions for the Production of Maximally Viable MicroencapsulatedL. acidophilusNCIMB 701748. Drying Technology, 31(11), 1274-1283. doi:10.1080/07373937.2013.788509
Broeckx, G., Vandenheuvel, D., Henkens, T., Kiekens, S., van den Broek, M. F. L., Lebeer, S., & Kiekens, F. (2017). Enhancing the viability of Lactobacillus rhamnosus GG after spray drying and during storage. International Journal of Pharmaceutics, 534(1-2), 35-41. doi:10.1016/j.ijpharm.2017.09.075
Burgain, J., Gaiani, C., Cailliez-Grimal, C., Jeandel, C., & Scher, J. (2013). Encapsulation of Lactobacillus rhamnosus GG in microparticles: Influence of casein to whey protein ratio on bacterial survival during digestion. Innovative Food Science & Emerging Technologies, 19, 233-242. doi:10.1016/j.ifset.2013.04.012
Chegini, G. R., & Ghobadian, B. (2007). Spray dryer parameters for fruit juice drying. World Journal of Agricultural Sciences, 3(2), 230-236.
Dave, R. I., & Shah, N. P. (1997). Viability of yoghurt and probiotic bacteria in yoghurts made from commercial starter cultures. International Dairy Journal, 7(1), 31-41.
De Castro-Cislaghi, F. P., Silva, C. D. R. E., Fritzen-Freire, C. B., Lorenz, J. G., & Sant’Anna, E. S. (2012). Bifidobacterium Bb-12 microencapsulated by spray drying with whey: Survival under simulated gastrointestinal conditions, tolerance to NaCl, and viability during storage. Journal of Food Engineering, 113(2), 186-193. doi:10.1016/j.jfoodeng.2012.06.006
Dimitrellou, D., Kandylis, P., Petrović, T., Dimitrijević-Branković, S., Lević, S., Nedović, V., & Kourkoutas, Y. (2016). Survival of spray dried microencapsulated Lactobacillus casei ATCC 393 in simulated gastrointestinal conditions and fermented milk. LWT - Food Science and Technology, 71, 169-174. doi:10.1016/j.lwt.2016.03.007
Fritzen-Freire, C. B., Prudêncio, E. S., Amboni, R. D. M. C., Pinto, S. S., Negrão-Murakami, A. N., & Murakami, F. S. (2012). Microencapsulation of bifidobacteria by spray drying in the presence of prebiotics. Food Research International, 45(1), 306-312. doi:10.1016/j.foodres.2011.09.020
Fritzen-Freire, C. B., Prudêncio, E. S., Pinto, S. S., Muñoz, I. B., & Amboni, R. D. M. C. (2013). Effect of microencapsulation on survival of Bifidobacterium BB-12 exposed to simulated gastrointestinal conditions and heat treatments. LWT - Food Science and Technology, 50(1), 39-44. doi:10.1016/j.lwt.2012.07.037
Goula, A. M., & Adamopoulos, K. G. (2012). A New Technique for Spray-Dried Encapsulation of Lycopene. Drying Technology, 30(6), 641-652. doi:10.1080/07373937.2012.655871
Gul, L. B., Gul, O., Yilmaz, M. T., Dertli, E., & Con, A. H. (2020). Optimization of cryoprotectant formulation to enhance the viability of Lactobacillus brevis ED25: Determination of storage stability and acidification kinetics in sourdough. Journal of Food Processing and Preservation. doi:10.1111/jfpp.14400
Gul, O. (2017). Microencapsulation of Lactobacillus casei Shirota by spray drying using different combinations of wall materials and application for probiotic dairy dessert. Journal of Food Processing and Preservation, 41(5). doi:10.1111/jfpp.13198
Hamilton-Miller, J. M. T., Shah, S., & Winkler, J. T. (1999). Public health issues arising from microbiological and labelling quality of foods and supplements containing probiotic microorganisms. Public Health Nutrition, 2(2), 223-229.
Heidebach, T., Först, P., & Kulozik, U. (2010). Influence of casein-based microencapsulation on freeze-drying and storage of probiotic cells. Journal of Food Engineering, 98(3), 309-316. doi:10.1016/j.jfoodeng.2010.01.003
Hernández-López, Z., Rangel-Vargas, E., Castro-Rosas, J., Gómez-Aldapa, C. A., Cadena-Ramírez, A., Acevedo-Sandoval, O. A., . . . Falfán-Cortés, R. N. (2018). Optimization of a spray-drying process for the production of maximally viable microencapsulated Lactobacillus pentosus using a mixture of starch-pulque as wall material. LWT - Food Science and Technology, 95, 216-222. doi:10.1016/j.lwt.2018.04.075
Ilha, E. C., da Silva, T., Lorenz, J. G., de Oliveira Rocha, G., & Sant’Anna, E. S. (2014). Lactobacillus paracasei isolated from grape sourdough: acid, bile, salt, and heat tolerance after spray drying with skim milk and cheese whey. European Food Research and Technology, 240(5), 977-984. doi:10.1007/s00217-014-2402-x
Jantzen, M., Gopel, A., & Beermann, C. (2013). Direct spray drying and microencapsulation of probiotic Lactobacillus reuteri from slurry fermentation with whey. Journal of Applied Microbiology, 115(4), 1029-1036. doi:10.1111/jam.12293
Kailasapathy, K. (2002). Microencapsulation of probiotic bacteria: technology and potential applications. Current Issues in Intestinal Microbiology, 3, 39-48.
Keivani Nahr, F., Mokarram, R. R., Hejazi, M. A., Ghanbarzadeh, B., Sowti Khiyabani, M., & Zoroufchi Benis, K. (2015). Optimization of the nanocellulose based cryoprotective medium to enhance the viability of freeze dried Lactobacillus plantarum using response surface methodology. LWT - Food Science and Technology, 64(1), 326-332. doi:10.1016/j.lwt.2015.06.004
Khater, K. A. A., Ali, M. A., & Ahmed, E. A. M. (2010). Effect of encapsulation on some probiotic criteria. Journal of American Science, 6(10), 836-845.
Knorr, D. (1998). Technology aspects related to microorganisms in functional food. Trends in Food Science and Technology, 9, 295-306.
Lira de Medeiros, A. C., Thomazini, M., Urbano, A., Pinto Correia, R. T., & Favaro-Trindade, C. S. (2014). Structural characterisation and cell viability of a spray dried probiotic yoghurt produced with goats' milk and Bifidobacterium animalis subsp. lactis (BI-07). International Dairy Journal, 39(1), 71-77. doi:10.1016/j.idairyj.2014.05.008
Malmo, C., La Storia, A., & Mauriello, G. (2011). Microencapsulation of Lactobacillus reuteri DSM 17938 Cells Coated in Alginate Beads with Chitosan by Spray Drying to Use as a Probiotic Cell in a Chocolate Soufflé. Food and Bioprocess Technology, 6(3), 795-805. doi:10.1007/s11947-011-0755-8
Mandal, S., Puniya, A. K., & Singh, K. (2006). Effect of alginate concentrations on survival of microencapsulated Lactobacillus casei NCDC-298. International Dairy Journal, 16(10), 1190-1195. doi:10.1016/j.idairyj.2005.10.005
Martín, M. J., Lara-Villoslada, F., Ruiz, M. A., & Morales, M. E. (2015). Microencapsulation of bacteria: A review of different technologies and their impact on the probiotic effects. Innovative Food Science & Emerging Technologies, 27, 15-25. doi:10.1016/j.ifset.2014.09.010
Moumita, S., Das, B., Hasan, U., & Jayabalan, R. (2018). Effect of long-term storage on viability and acceptability of lyophilized and spray-dried synbiotic microcapsules in dry functional food formulations. Lwt, 96, 127-132. doi:10.1016/j.lwt.2018.05.030
Rajam, R., & Anandharamakrishnan, C. (2015). Microencapsulation of Lactobacillus plantarum (MTCC 5422) with fructooligosaccharide as wall material by spray drying. LWT - Food Science and Technology, 60(2), 773-780. doi:10.1016/j.lwt.2014.09.062
Rajam, R., Karthik, P., Parthasarathi, S., Joseph, G. S., & Anandharamakrishnan, C. (2012). Effect of whey protein – alginate wall systems on survival of microencapsulated Lactobacillus plantarum in simulated gastrointestinal conditions. Journal of Functional Foods, 4(4), 891-898. doi:10.1016/j.jff.2012.06.006
Ranadheera, C. S., Evans, C. A., Adams, M. C., & Baines, S. K. (2015). Microencapsulation of Lactobacillus acidophilus LA-5, Bifidobacterium animalis subsp. lactis BB-12 and Propionibacterium jensenii 702 by spray drying in goat's milk. Small Ruminant Research, 123(1), 155-159. doi:10.1016/j.smallrumres.2014.10.012
Reddy, K. B. P. K., Madhu, A. N., & Prapulla, S. G. (2009). Comparative survival and evaluation of functional probiotic properties of spray-dried lactic acid bacteria. International Journal of Dairy Technology, 62(2), 240-248. doi:10.1111/j.1471-0307.2009.00480.x
Reyes, V., Chotiko, A., Chouljenko, A., Campbell, V., Liu, C., Theegala, C., & Sathivel, S. (2018). Influence of wall material on production of spray dried Lactobacillus plantarum NRRL B-4496 and its viability at different storage conditions. Drying Technology, 36(14), 1738-1748. doi:10.1080/07373937.2017.1423324
Reyes, V., Chotiko, A., Chouljenko, A., & Sathivel, S. (2018). Viability of Lactobacillus acidophilus NRRL B-4495 encapsulated with high maize starch, maltodextrin, and gum arabic. Lwt, 96, 642-647. doi:10.1016/j.lwt.2018.06.017
Savedboworn, W., Kerdwan, N., Sakorn, A., Charoen, R., Tipkanon, S., & Pattayakorn, K. (2017). Role of protective agents on the viability of probiotic Lactobacillus plantarum during freeze drying and subsequent storage. International Food Research Journal, 24(2), 787-794.
Semyonov, D., Ramon, O., Kaplun, Z., Levin-Brener, L., Gurevich, N., & Shimoni, E. (2010). Microencapsulation of Lactobacillus paracasei by spray freeze drying. Food Research International, 43(1), 193-202. doi:10.1016/j.foodres.2009.09.028
Tantratian, S., Wattanaprasert, S., & Suknaisilp, S. (2018). Effect of partial substitution of milk-non-fat with xanthan gum on encapsulation of a probiotic Lactobacillus. Journal of Food Processing and Preservation, 42(7). doi:10.1111/jfpp.13673
Tao, T., Ding, Z., Hou, D., Prakash, S., Zhao, Y., Fan, Z., . . . Han, J. (2019). Influence of polysaccharide as co-encapsulant on powder characteristics, survival and viability of microencapsulated Lactobacillus paracasei Lpc-37 by spray drying. Journal of Food Engineering, 252, 10-17. doi:10.1016/j.jfoodeng.2019.02.009
Tripathi, M. K., & Giri, S. K. (2014). Probiotic functional foods: Survival of probiotics during processing and storage. Journal of Functional Foods, 9, 225-241. doi:10.1016/j.jff.2014.04.030
Xavier dos Santos, D., Casazza, A. A., Aliakbarian, B., Bedani, R., Saad, S. M. I., & Perego, P. (2019). Improved probiotic survival to in vitro gastrointestinal stress in a mousse containing Lactobacillus acidophilus La-5 microencapsulated with inulin by spray drying. LWT - Food Science and Technology, 99, 404-410. doi:10.1016/j.lwt.2018.10.010
Yao, M., Li, B., Ye, H., Huang, W., Luo, Q., Xiao, H., . . . Li, L. (2018). Enhanced viability of probiotics (Pediococcus pentosaceus Li05) by encapsulation in microgels doped with inorganic nanoparticles. Food Hydrocolloids, 83, 246-252. doi:10.1016/j.foodhyd.2018.05.024
Ying, D. Y., Phoon, M. C., Sanguansri, L., Weerakkody, R., Burgar, I., & Augustin, M. A. (2010). Microencapsulated Lactobacillus rhamnosus GG powders: relationship of powder physical properties to probiotic survival during storage. Journal of Food Science, 75(9), E588-595. doi:10.1111/j.1750-3841.2010.01838.x
Gül, O., & Dervişoğlu, M. (2020). Optimization of spray drying conditions for microencapsulation of Lactobacillus casei Shirota using response surface methodology. European Food Science and Engineering, 1(1), 1-8.