Çalışma için etik onay [T.C. ÇANKIRI KARATEKIN ÜNİVERSİTESİ Fen, Matematik ve Sosyal Bilimler Etik Kurulu]'ndan alınmıştır (Onay No: [44], Tarih: [23-08-2024]). Beyan edilecek herhangi bir çıkar çatışması yoktur.
Obesity is a growing public health concern, particularly among university students who are exposed to lifestyle changes, disordered eating habits, and reduced physical activity. The aim of this study is to classify obesity risk levels among university students using machine learning classification methods and to identify the most influential factors associated with this risk. The study sample consisted of data collected from 445 students studying at Çankırı Karatekin University. In this context, eight machine learning algorithms—Logistic Regression, Random Forest, Extra Trees, Support Vector Machines, K-Nearest Neighbor, Quadratic Discriminant Analysis, Naive Bayes, and Multilayer Perceptron—were compared to classify obesity risk. Class imbalance in the dataset was addressed using the Adaptive Synthetic Sampling (ADASYN) method applied exclusively to the training set. The models were evaluated using standard performance metrics, and the highest accuracy rate (96.26%) was achieved by the Random Forest model, followed by Logistic Regression with 94.77% accuracy. Variable importance analysis indicated that age, internet use scale score, and fast-food consumption frequency were the most influential factors in classification, while the low correlation between variables (|r| < 0.2) suggested that model performance was driven by the combined contribution of multiple features. Overall, the findings demonstrate that the balanced machine learning approach, particularly ensemble-based methods, can classify obesity risk with high accuracy and provide valuable insights for targeted prevention strategies among university students.
Adaptive synthetic sampling machine learning obesity young adults.
Ethical approval for the study was obtained from the [T.C. ÇANKIRI KARATEKIN UNIVERSITY Science, Mathematics and Social Sciences Ethics Committee] (Approval No: [44], Date: [23-08-2024]). There are no conflicts of interest to declare.
| Birincil Dil | İngilizce |
|---|---|
| Konular | Sağlık ve Ekolojik Risk Değerlendirmesi, Dijital Sağlık |
| Bölüm | Araştırma Makalesi |
| Yazarlar | |
| Gönderilme Tarihi | 19 Ağustos 2025 |
| Kabul Tarihi | 17 Kasım 2025 |
| Yayımlanma Tarihi | 31 Aralık 2025 |
| Yayımlandığı Sayı | Yıl 2025 Cilt: 9 Sayı: 2 |
Açık erişimli ve çift-kör hakemli bir dergidir.
Dergi içeriği tüm kullanıcılara ücretsiz olarak sunulmaktadır.
Dergideki yazıların bilimsel sorumluluğu yazarlarına aittir.
Dergimizde yayınlanmış makaleler kaynak gösterilmeden kullanılamaz
© T.C. Sağlık Bakanlığı Sağlık Hizmetleri Genel Müdürlüğü Araştırma, Geliştirme ve Sağlık Teknolojisi Değerlendirme Daire Başkanlığı
Tüm Hakları Türkiye Cumhuriyeti Sağlık Bakanlığı Sağlık Hizmetleri Genel Müdürlüğüne aittir.