BibTex RIS Kaynak Göster

Matematikçilerin Teoremlerin ve İspatların Kabulü İçin Kişisel Kriterleri: Türkiye Örneği

Yıl 2014, Sayı: 10, 95 - 112, 23.07.2016

Öz

Bu çalışmada, matematikçilerin uzman oldukları araştırma alanlarına yönelik teoremlerin doğruluğunu, uzman olmadıkları diğer araştırma alanlarındaki teoremlerin doğruluğunu ve bir araştırma makalesindeki hakemlik süreçlerinde bir teoremin ve ispatının doğruluğunu kabul ederken hangi kriterlere sahip olduklarının araştırılması amaçlanmıştır. Çalışma, 26 farklı üniversitede matematik bölümlerinde görev yapan ve araştırmaya katılmaya gönüllü olan 102 matematikçi ile yürütülmüştür. Veriler, Matematiksel Teoremlerin Kabulü ve İspat Anketi (MTKİA) ile elde edilmiştir. Elde edilen verilerin analizinde betimsel ve kestirimsel istatistik yöntemleri kullanılmıştır. Araştırma sonucunda matematikçilerin hem uzman oldukları araştırma alanları ile ilgili hem de diğer araştırma alanları ile ilgili teoremlerin ve ispatlarının doğruluğunu kabul etmeleri için kendi incelemeleri ile sonucu doğrulamaları gerektiği kriterlerinin olduğu tespit edilmiştir. Ayrıca matematikçilerin hakemlik süreçlerindeki kriterlerin de farklı olmadığı görülmüştür

Kaynakça

  • Almeida, D. (2001). Pupil’s proof potential. International Journal of Mathematical Education in Science and Technology, 32(1), 53-60.
  • Baki, A. (2008). From theory to practice in mathematics education. Harf Publications, Ankara.
  • Baki, A., Bütün, M. & Karakuş F. (2010). An adaptation of the Lakatosian knowledge development model to school mathematics. Turkish Journal of Computer and Mathematics Education, 1(3), 285-308.
  • Cohen, L. & Manion, L. (1997). Research methods in education. 4th ed. London: Routledge.
  • Ernest, P. (2004). Images of mathematics, values and gender: A philosophical perspective. In B. Allen & S. Johnston-Wilder (Eds.), Mathematics education: Exploring the culture of learning (pp. 11-25). Routledge Falmer: London, 11-25.
  • Gödel, K. (2010). On formally undecidable propositions of principia mathematica and related systems I. In Ö. Ekin (Translate), Boğaziçi University Press, İstanbul.
  • Harel, G., & Sowder, L. (1998). Students’ proof schemes: results from an exploratory study. In A. H. Schoenfeld, J. Kaput, & E. Dubinsky (Eds.), Research In College Mathematics Education III (Pp. 234-283). Providence, RI: AMS.
  • Heinze, A. (2010). Mathematicians’ individual criteria for accepting theorems and proofs: An empirical approach. In G. Hanna et al. (eds.), Explanation and Proof in Mathematics: Philosophical and Educational Perspectives, Springer New York Dordrecht Heidelberg London, 101-111.
  • Karasar, N. (2009). Scientific research methods. Nobel Publishing.
  • Lakatos, I. (1976). Proofs and refutations: The logic of mathematics discovery. Cambridge: Cambridge University Press.
  • Nesin, A. (2008). Mathematics and truth. Nesin Publications, İstanbul.
  • Pelc, A. (2009). Why do we believe theorems?. Philosophia Mathematica, 17(3), 84–94.
  • Rav, Y. (1999). Why do we prove theorems?. Philosophia Mathematica, 7(1), 5-41.
  • Yıldırım, C. (1996). Mathematical thinking. Remzi Bookstore, İstanbul.

Mathematicians’ Individual Criteria for Accepting Theorems and Proofs: The Sample of Turkey

Yıl 2014, Sayı: 10, 95 - 112, 23.07.2016

Öz

The aim of this study is to research the criteria employed by mathematicians when accepting the correctness of theorems in their research areas, correctness of theorems in other research areas in which they are not expert, and the correctness of a theorem and its proof in their reviewing process of a research article. The study was conducted with 102 mathematicians who volunteered to participate in the research. State universities located in Turkey were considered in selecting the participants, and the researcher selected the academicians who were working at the department of mathematics in these universities. Twenty-six of these universities could be included in the research since the research was conducted according to the principle of voluntariness. The data were obtained via Survey on Accepting Mathematical Theorems and Proofs (SAMTP). Descriptive and predictive statistics methods were used in analyzing the data obtained. In view of the research, it was found that mathematicians had such criterion that they had to verify the result through their own examinations in order to accept correctness of theorems and their proofs related to both and other research areas. Furthermore, it was observed that the mathematicians’ criteria are not different in the reviewing processes

Kaynakça

  • Almeida, D. (2001). Pupil’s proof potential. International Journal of Mathematical Education in Science and Technology, 32(1), 53-60.
  • Baki, A. (2008). From theory to practice in mathematics education. Harf Publications, Ankara.
  • Baki, A., Bütün, M. & Karakuş F. (2010). An adaptation of the Lakatosian knowledge development model to school mathematics. Turkish Journal of Computer and Mathematics Education, 1(3), 285-308.
  • Cohen, L. & Manion, L. (1997). Research methods in education. 4th ed. London: Routledge.
  • Ernest, P. (2004). Images of mathematics, values and gender: A philosophical perspective. In B. Allen & S. Johnston-Wilder (Eds.), Mathematics education: Exploring the culture of learning (pp. 11-25). Routledge Falmer: London, 11-25.
  • Gödel, K. (2010). On formally undecidable propositions of principia mathematica and related systems I. In Ö. Ekin (Translate), Boğaziçi University Press, İstanbul.
  • Harel, G., & Sowder, L. (1998). Students’ proof schemes: results from an exploratory study. In A. H. Schoenfeld, J. Kaput, & E. Dubinsky (Eds.), Research In College Mathematics Education III (Pp. 234-283). Providence, RI: AMS.
  • Heinze, A. (2010). Mathematicians’ individual criteria for accepting theorems and proofs: An empirical approach. In G. Hanna et al. (eds.), Explanation and Proof in Mathematics: Philosophical and Educational Perspectives, Springer New York Dordrecht Heidelberg London, 101-111.
  • Karasar, N. (2009). Scientific research methods. Nobel Publishing.
  • Lakatos, I. (1976). Proofs and refutations: The logic of mathematics discovery. Cambridge: Cambridge University Press.
  • Nesin, A. (2008). Mathematics and truth. Nesin Publications, İstanbul.
  • Pelc, A. (2009). Why do we believe theorems?. Philosophia Mathematica, 17(3), 84–94.
  • Rav, Y. (1999). Why do we prove theorems?. Philosophia Mathematica, 7(1), 5-41.
  • Yıldırım, C. (1996). Mathematical thinking. Remzi Bookstore, İstanbul.
Toplam 14 adet kaynakça vardır.

Ayrıntılar

Diğer ID JA57AG28KD
Bölüm Makaleler
Yazarlar

GÜRSEL Güler Bu kişi benim

Yayımlanma Tarihi 23 Temmuz 2016
Gönderilme Tarihi 23 Temmuz 2016
Yayımlandığı Sayı Yıl 2014 Sayı: 10

Kaynak Göster

APA Güler, G. (2016). Matematikçilerin Teoremlerin ve İspatların Kabulü İçin Kişisel Kriterleri: Türkiye Örneği. Eğitim Ve İnsani Bilimler Dergisi: Teori Ve Uygulama(10), 95-112.