Araştırma Makalesi
BibTex RIS Kaynak Göster

Experimental Study on the Energy Absorption Behavior of Syntactic Foam-Filled Thin-Walled Tubes

Yıl 2022, , 37 - 41, 31.07.2022
https://doi.org/10.55581/ejeas.1127903

Öz

Thin-walled profiles with different core structures have been utilized to obtain lightweight energy absorbers. In this paper, syntactic foams introduced aluminum tubes. Syntactic foams are composed of epoxy resin and expanded glass granules. The energy absorption behavior of empty tubes and syntactic foam-filled tubes are studied through quasi-static axial compression tests. The effects of the interaction between the tube and the foam on the deformation mode are analyzed in the aspect of several parameters such as specific energy absorption, energy absorption effectiveness, initial peak load, and average load. It is found that the addition of syntactic foam to the aluminum tube increases the specific absorbed energy by 42 %.

Kaynakça

  • Xu, F., Zhang, X., & Zhang, H. (2018). A review on functionally graded structures and materials for energy absorption. Engineering structures, 171, 309–325.
  • Song, J., Xu, S., Xu, L., Zhou, J., & Zou, M. (2020). Experimental study on the crashworthiness of bio-inspired aluminum foam-filled tubes under axial compression loading. Thin–walled structures, 155, 106937.
  • Altin, M., Güler, M. A., & Mert, S.K. (2017). The effect of percent foam fill ratio on the energy absorption capacity of axially compressed thin-walled multi-cell square and circular tubes. International journal of mechanical sciences, 131–132, 368–379.
  • An, X., Gao, Y., Fang, J., Sun, G., & Li, Q. (2015). Crashworthiness design for foam-filled thin-walled structures with functionally lateral graded thickness sheets. Thin-walled structures, 91, 63–71.
  • Yin, H., Wen, G., Liu, Z., & Qing, Q. (2014). Crashworthiness optimization design for foam-filled multi-cell thin-walled structures. Thin-walled structures, 75, 8–17.
  • Kılıçaslan, C. (2015). Numerical crushing analysis of aluminum foam-filled corrugated single- and double-circular tubes subjected to axial impact loading. Thin-walled structures, 96, 82–94.
  • Hou, S.,Li, Q., Long, S., Yang, X., & Li, W. (2009). Crashworthiness design for foam filled thin-wall structures. Materials and design, 30, 2024–2032.
  • Li, G., Zhang, Z., Sun, G., Xu, F., & Huang, X. (2014). Crushing analysis and multi objective optimization for functionally graded foam-filled tubes under multiple load cases. International journal of mechanical sciences, 89, 439–452.
  • Lia, Z., Chen, R., & Lu, F. (2018). Comparative analysis of crashworthiness of empty and foam-filled thin walled tubes Thin-walled structures, 124, 343–349.
  • Wang, H., Su, M., & Hao, H. (2020). The quasi-static axial compressive properties and energy absorption behavior of ex-situ ordered aluminum cellular structure filled tubes. Composite structures, 239 112039
  • Sun, G., Wang, Z., Yu, H., Gong, Z., & Li, Q. (2019). Experimental and numerical investigation into the crashworthiness of metal foam- composite hybrid structures. Composite structures, 209, 535-547.
  • Mohammadiha, O., & Ghariblu, H. (2016). Crush behavior optimization of multi-tubes filled by functionally graded foam. Thin-walled structures, 98, 627–639.
  • Yalçın, M. M., & Genel, K. (2019). On the axial deformation characteristic of PVC foam-filled circular aluminium tube: Effect of radially-graded foam filling. Thin-walled structures, 144, 106335.
  • Ali Ghamarian, A., Zarei, H.R., & Abadi, M.T. (2011). Experimental and numerical crash worthiness investigation of empty and foam-filled end-capped conical tubes. Thin-walled structures, 49, 1312–1319.
  • Cui, L., Kiernan, S., & Gilchrist, M. D. (2009). Designing the energy absorption capacity of functionally graded foam materials. Materials science and engineering a, 507, 215–225.
  • Zarei, H.R., & Ghamarian, A. (2014). Experimental and numerical crashworthiness investigation of empty and foam-filled thin-walled tubes with shallow spherical caps. Experimental mechanics, 54, 115–126.
  • Toksoy, A. K., & Güden, M. (2005). The strengthening effect of polystyrene foam filling in aluminum thin-walled cylindrical tubes. Thin-walled structures, 43, 333–350.
  • Zhang, B., Fan, Z., Hu, S., Shen, Z., & Ma, H. (2019). Mechanical response of the fly ash cenospheres/polyurethane syntactic foams fabricated through infiltration process. Construction and building materials, 206, 552–559.
  • Meng, J., Liu, T. W., Wang, H .Y., Dai, & L. H. (2021). Ultra-high energy absorption high-entropy alloy syntactic foam. Composites part b, 207, 108563.
  • Su, M., Wang, H., & Hao H. (2019). Axial and radial compressive properties of alumina-aluminum matrix syntactic foam filled thin-walled tubes. Composite structures, 226, 111197.
  • Wang, L., Zhang, B., Zhang, J., Jiang, Y., Wang, W., & Wu, G. (2021). Deformation and energy absorption properties of cenosphere-aluminum syntactic foam-filled tubes under axial compression. Thin–walled structures, 160, 107364.
  • Higuchi, M., Saka, T., Fujımoto, K., & Adachi, T. (2012). Energy absorption of thin-walled circular tube filled with syntactic epoxy foam subjected to axial compression. Journal of jsem, 12, 133-138.
  • Zarei, H., & Kröger, M. (2008). Optimum honeycomb filled crash absorber design. Materials and design, 29, 193–204.
  • Zhang, Z., Liu, S., & Tang, Z. (2011). Comparisons of honeycomb sandwich and foam-filled cylindrical columns under axial crushing loads. Thin-walled structures, 49(9), 1071-1079.
  • STIKLOPORAS, expanded glass technical data sheet, (2017).
  • HEXION® Specialty Chemicals, Laminating Resin MGS® L 285 Hardeners MGS® 285-287 Technical data sheet.

Boşluklu Köpük Dolgulu Ince Duvarlı Tüplerin Enerji Absorpsiyon Davranışı Üzerine Deneysel Çalışma

Yıl 2022, , 37 - 41, 31.07.2022
https://doi.org/10.55581/ejeas.1127903

Öz

Hafif enerji emiciler elde etmek için farklı çekirdek yapılarına sahip ince cidarlı profiller değerlendirilmektedir. Bu çalışmada, boşluklu köpükler alüminyum tüplere doldurulmuştur. Boşluklu köpükler, epoksi reçine ve genleştirilmiş camdan oluşturulmuştur. Boş tüplerin ve boşluklu köpük dolgulu tüplerin enerji absorpsiyon davranışı, statik eksenel sıkıştırma testi ile araştırılmıştır. Tüp ve köpük arasındaki etkileşim ve bunun deformasyon modu üzerindeki etkisi araştırılmıştır. Spesifik enerji absorpsiyonu, enerji absorpsiyon etkinliği, ilk tepe yük, ortalama yük gibi çeşitli parametreler karşılaştırılmıştır. Geliştirilen boşluklu köpüğün aluminyum boruya ilavesi spesifik enerji absorpsiyonunda %42 iyileştirme sağlamıştır.

Kaynakça

  • Xu, F., Zhang, X., & Zhang, H. (2018). A review on functionally graded structures and materials for energy absorption. Engineering structures, 171, 309–325.
  • Song, J., Xu, S., Xu, L., Zhou, J., & Zou, M. (2020). Experimental study on the crashworthiness of bio-inspired aluminum foam-filled tubes under axial compression loading. Thin–walled structures, 155, 106937.
  • Altin, M., Güler, M. A., & Mert, S.K. (2017). The effect of percent foam fill ratio on the energy absorption capacity of axially compressed thin-walled multi-cell square and circular tubes. International journal of mechanical sciences, 131–132, 368–379.
  • An, X., Gao, Y., Fang, J., Sun, G., & Li, Q. (2015). Crashworthiness design for foam-filled thin-walled structures with functionally lateral graded thickness sheets. Thin-walled structures, 91, 63–71.
  • Yin, H., Wen, G., Liu, Z., & Qing, Q. (2014). Crashworthiness optimization design for foam-filled multi-cell thin-walled structures. Thin-walled structures, 75, 8–17.
  • Kılıçaslan, C. (2015). Numerical crushing analysis of aluminum foam-filled corrugated single- and double-circular tubes subjected to axial impact loading. Thin-walled structures, 96, 82–94.
  • Hou, S.,Li, Q., Long, S., Yang, X., & Li, W. (2009). Crashworthiness design for foam filled thin-wall structures. Materials and design, 30, 2024–2032.
  • Li, G., Zhang, Z., Sun, G., Xu, F., & Huang, X. (2014). Crushing analysis and multi objective optimization for functionally graded foam-filled tubes under multiple load cases. International journal of mechanical sciences, 89, 439–452.
  • Lia, Z., Chen, R., & Lu, F. (2018). Comparative analysis of crashworthiness of empty and foam-filled thin walled tubes Thin-walled structures, 124, 343–349.
  • Wang, H., Su, M., & Hao, H. (2020). The quasi-static axial compressive properties and energy absorption behavior of ex-situ ordered aluminum cellular structure filled tubes. Composite structures, 239 112039
  • Sun, G., Wang, Z., Yu, H., Gong, Z., & Li, Q. (2019). Experimental and numerical investigation into the crashworthiness of metal foam- composite hybrid structures. Composite structures, 209, 535-547.
  • Mohammadiha, O., & Ghariblu, H. (2016). Crush behavior optimization of multi-tubes filled by functionally graded foam. Thin-walled structures, 98, 627–639.
  • Yalçın, M. M., & Genel, K. (2019). On the axial deformation characteristic of PVC foam-filled circular aluminium tube: Effect of radially-graded foam filling. Thin-walled structures, 144, 106335.
  • Ali Ghamarian, A., Zarei, H.R., & Abadi, M.T. (2011). Experimental and numerical crash worthiness investigation of empty and foam-filled end-capped conical tubes. Thin-walled structures, 49, 1312–1319.
  • Cui, L., Kiernan, S., & Gilchrist, M. D. (2009). Designing the energy absorption capacity of functionally graded foam materials. Materials science and engineering a, 507, 215–225.
  • Zarei, H.R., & Ghamarian, A. (2014). Experimental and numerical crashworthiness investigation of empty and foam-filled thin-walled tubes with shallow spherical caps. Experimental mechanics, 54, 115–126.
  • Toksoy, A. K., & Güden, M. (2005). The strengthening effect of polystyrene foam filling in aluminum thin-walled cylindrical tubes. Thin-walled structures, 43, 333–350.
  • Zhang, B., Fan, Z., Hu, S., Shen, Z., & Ma, H. (2019). Mechanical response of the fly ash cenospheres/polyurethane syntactic foams fabricated through infiltration process. Construction and building materials, 206, 552–559.
  • Meng, J., Liu, T. W., Wang, H .Y., Dai, & L. H. (2021). Ultra-high energy absorption high-entropy alloy syntactic foam. Composites part b, 207, 108563.
  • Su, M., Wang, H., & Hao H. (2019). Axial and radial compressive properties of alumina-aluminum matrix syntactic foam filled thin-walled tubes. Composite structures, 226, 111197.
  • Wang, L., Zhang, B., Zhang, J., Jiang, Y., Wang, W., & Wu, G. (2021). Deformation and energy absorption properties of cenosphere-aluminum syntactic foam-filled tubes under axial compression. Thin–walled structures, 160, 107364.
  • Higuchi, M., Saka, T., Fujımoto, K., & Adachi, T. (2012). Energy absorption of thin-walled circular tube filled with syntactic epoxy foam subjected to axial compression. Journal of jsem, 12, 133-138.
  • Zarei, H., & Kröger, M. (2008). Optimum honeycomb filled crash absorber design. Materials and design, 29, 193–204.
  • Zhang, Z., Liu, S., & Tang, Z. (2011). Comparisons of honeycomb sandwich and foam-filled cylindrical columns under axial crushing loads. Thin-walled structures, 49(9), 1071-1079.
  • STIKLOPORAS, expanded glass technical data sheet, (2017).
  • HEXION® Specialty Chemicals, Laminating Resin MGS® L 285 Hardeners MGS® 285-287 Technical data sheet.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makaleleri
Yazarlar

Kenan Çınar 0000-0001-7402-2032

Yayımlanma Tarihi 31 Temmuz 2022
Gönderilme Tarihi 8 Haziran 2022
Yayımlandığı Sayı Yıl 2022