Araştırma Makalesi
BibTex RIS Kaynak Göster

The Effect Of Vacuum Heat Treatment On Microstructural And Corrosion Properties Of CuAl10Ni5Fe3Mn Alloy

Yıl 2025, Cilt: 8 Sayı: 1, 1 - 6, 31.07.2025
https://doi.org/10.55581/ejeas.1500805

Öz

Nickel aluminum bronzes (NAB) are copper alloys widely used in critical applications in the defense, aerospace and marine industries. These alloys exhibit excellent properties such as wear resistance, corrosion resistance, impact strength, hardness and ductility, which are highly dependent on their composition and production conditions. Despite the relatively low formation of oxide layers on the surface of nickel aluminum bronze components under heat treatment conditions due to the high nickel content, there are special applications where the formation of oxide layers on the surface is undesirable. For this reason, the heat treatment of CuAl10Ni5Fe3Mn alloy was carried out in a vacuum furnace and the heat treatment process conditions in a non-vacuum muffle furnace were compared. For comparison purposes, the microstructure of the materials was examined and hardness and tensile tests and potentiodynamic corrosion tests were performed. It was determined that heat treatment in the muffle furnace led to a decrease in the proportion of the α phase and a higher formation of the β and κ phases compared to the heat treatment in a vacuum atmosphere. The material heat treated in the muffle furnace exhibited higher hardness and strength values as well as improved corrosion resistance compared to the material treated in the vacuum furnace.

Kaynakça

  • Meigh, H. (2018). Cast and wrought aluminium bronzes: properties, processes and structure. CRC Press.
  • Culpan, E. A., & Rose, G. (1978). Microstructural characterization of cast nickel aluminium bronze. Journal of materials science, 13, 1647-1657.
  • Brona, M. L. A. (2014). Influence of heat treatment on the microstructure and mechanical properties of aluminium bronze. Mat. Technol, 48, 599-604.
  • Jahanafrooz, A., Hasan, F., Lorimer, G. W., & Ridley, N. (1983). Microstructural development in complex nickel-aluminum bronzes. Metallurgical Transactions A, 14, 1951-1956.
  • Meigh, H. (2018). Cast and wrought aluminium bronzes: properties, processes and structure. CRC Press.
  • Hasan, F., Jahanafrooz, A., Lorimer, G. W., & Ridley, N. (1982). The morphology, crystallography, and chemistry of phases in as-cast nickel-aluminum bronze. Metallurgical Transactions A, 13, 1337-1345..
  • Ünal, M. "Alüminyum bronzunda farklı katılaşma hızlarının mikroyapı ve mekanik özelliklerine etkisi, (1999), MsC, Gazi Üniversitesi Fen Bilimleri Enstitüsü, Ankara.
  • Yaseen, M. K., Mansoor, M., Ansari, H. A., Hussain, S., & Khan, S. (2018). Effect of heat treatment on tribological characteristics of CuAl10Ni5Fe4 nickel aluminum bronze. Key Engineering Materials, 778, 61-67.
  • Zhang, D., Ruiping, C. H. E. N., Zhang, W., Zongqiang, L. U. O., & Yuanyuan, L. I. (2010). Effect of microstructure on the mechanical and corrosion behaviors of a hot-extruded nickel aluminum bronze. Acta Metallurgica Sinica (English Letters), 23(2), 113.
  • H. S. Campbell, “Aluminium Bronze Corrosion Resistance Guide,” Publication 80, Copper Development Association, UK, July 1981, pp. 1-27.
  • Anantapong, J., Uthaisangsuk, V., Suranuntchai, S., & Manonukul, A. (2014). Effect of hot working on microstructure evolution of as-cast Nickel Aluminum Bronze alloy. Materials & Design, 60, 233-243.
  • Orzolek, S. M., Semple, J. K., & Fisher, C. R. (2022). Influence of processing on the microstructure of nickel aluminum bronze (NAB). Additive Manufacturing, 56, 102859.
  • Wu, Z., Cheng, Y. F., Liu, L., Lv, W., & Hu, W. (2015). Effect of heat treatment on microstructure evolution and erosion–corrosion behavior of a nickel–aluminum bronze alloy in chloride solution. Corrosion Science, 98, 260-270.
  • Ding, Y., Zhao, R., Qin, Z., Wu, Z., Wang, L., Liu, L., & Lu, W. (2019). Evolution of the corrosion product film on nickel-aluminum bronze and its corrosion behavior in 3.5 wt% NaCl solution. Materials, 12(2), 209.
  • Wharton, J. A., Barik, R. C., Kear, G., Wood, R. J. K., Stokes, K. R., & Walsh, F. C. (2005). The corrosion of nickel–aluminium bronze in seawater. Corrosion science, 47(12), 3336-3367.
  • Böhm, J., Linhardt, P., Strobl, S., Haubner, R., & Biezma, M. V. (2016). Microstructure of a heat treated nickel-aluminum bronze and its corrosion behavior in simulated fresh and sea water. Materials Performance and Characterization, 5(5).
  • Qin, Z., Zhang, Q., Luo, Q., Wu, Z., Shen, B., Liu, L., & Hu, W. (2018). Microstructure design to improve the corrosion and cavitation corrosion resistance of a nickel-aluminum bronze. Corrosion Science, 139, 255-266.
  • Huttunen-Saarivirta, E., Isotahdon, E., Metsäjoki, J., Salminen, T., Carpén, L., & Ronkainen, H. (2018). Tribocorrosion behaviour of aluminium bronze in 3.5 wt.% NaCl solution. Corrosion Science, 144, 207-223.
  • Powell, C., & Webster, P. (2019). Copper alloys. In Corrosion Performance of Metals for the Marine Environment EFC 63 (pp. 26-41). CRC Press.

Vakum Isıl İşleminin CuAl10Ni5Fe3Mn Alaşımının Mikroyapısal ve Korozyon Özellikleri Üzerindeki Etkisi

Yıl 2025, Cilt: 8 Sayı: 1, 1 - 6, 31.07.2025
https://doi.org/10.55581/ejeas.1500805

Öz

Nikel alüminyum bronzları (NAB), savunma, havacılık ve denizcilik endüstrilerindeki kritik uygulamalarda yaygın olarak kullanılan bakır alaşımlarıdır. Bu alaşımlar, bileşimlerine ve üretim koşullarına büyük ölçüde bağlı olan aşınma direnci, korozyon direnci, darbe dayanımı, sertlik ve süneklik gibi mükemmel özellikler sergilerler. Yüksek nikel içeriği nedeniyle ısıl işlem koşullarında nikel alüminyum bronz bileşenlerin yüzeyinde nispeten düşük oksit katmanları oluşumuna rağmen, yüzeyde oksit katmanlarının oluşumunun istenmediği özel uygulamalar vardır. Bu nedenle CuAl10Ni5Fe3Mn alaşımının ısıl işlemi vakumlu fırında gerçekleştirilmiş ve vakumsuz kül fırınındaki ısıl işlem proses koşulları karşılaştırılmıştır. Karşılaştırma amacıyla malzemelerin mikro yapısı incelenerek sertlik ve çekme testleri ile potansiyodinamik korozyon testleri yapıldı. Kül fırınındaki ısıl işlemin, vakum atmosferindeki ısıl işleme kıyasla α fazının oranının azalmasına ve β ve κ fazlarının daha yüksek oluşumuna yol açtığı belirlendi. Kül fırınında ısıl işleme tabi tutulan malzeme, vakum fırınında işlem gören malzemeye göre daha yüksek sertlik ve mukavemet değerlerinin yanı sıra gelişmiş korozyon direnci sergilemiştir.

Kaynakça

  • Meigh, H. (2018). Cast and wrought aluminium bronzes: properties, processes and structure. CRC Press.
  • Culpan, E. A., & Rose, G. (1978). Microstructural characterization of cast nickel aluminium bronze. Journal of materials science, 13, 1647-1657.
  • Brona, M. L. A. (2014). Influence of heat treatment on the microstructure and mechanical properties of aluminium bronze. Mat. Technol, 48, 599-604.
  • Jahanafrooz, A., Hasan, F., Lorimer, G. W., & Ridley, N. (1983). Microstructural development in complex nickel-aluminum bronzes. Metallurgical Transactions A, 14, 1951-1956.
  • Meigh, H. (2018). Cast and wrought aluminium bronzes: properties, processes and structure. CRC Press.
  • Hasan, F., Jahanafrooz, A., Lorimer, G. W., & Ridley, N. (1982). The morphology, crystallography, and chemistry of phases in as-cast nickel-aluminum bronze. Metallurgical Transactions A, 13, 1337-1345..
  • Ünal, M. "Alüminyum bronzunda farklı katılaşma hızlarının mikroyapı ve mekanik özelliklerine etkisi, (1999), MsC, Gazi Üniversitesi Fen Bilimleri Enstitüsü, Ankara.
  • Yaseen, M. K., Mansoor, M., Ansari, H. A., Hussain, S., & Khan, S. (2018). Effect of heat treatment on tribological characteristics of CuAl10Ni5Fe4 nickel aluminum bronze. Key Engineering Materials, 778, 61-67.
  • Zhang, D., Ruiping, C. H. E. N., Zhang, W., Zongqiang, L. U. O., & Yuanyuan, L. I. (2010). Effect of microstructure on the mechanical and corrosion behaviors of a hot-extruded nickel aluminum bronze. Acta Metallurgica Sinica (English Letters), 23(2), 113.
  • H. S. Campbell, “Aluminium Bronze Corrosion Resistance Guide,” Publication 80, Copper Development Association, UK, July 1981, pp. 1-27.
  • Anantapong, J., Uthaisangsuk, V., Suranuntchai, S., & Manonukul, A. (2014). Effect of hot working on microstructure evolution of as-cast Nickel Aluminum Bronze alloy. Materials & Design, 60, 233-243.
  • Orzolek, S. M., Semple, J. K., & Fisher, C. R. (2022). Influence of processing on the microstructure of nickel aluminum bronze (NAB). Additive Manufacturing, 56, 102859.
  • Wu, Z., Cheng, Y. F., Liu, L., Lv, W., & Hu, W. (2015). Effect of heat treatment on microstructure evolution and erosion–corrosion behavior of a nickel–aluminum bronze alloy in chloride solution. Corrosion Science, 98, 260-270.
  • Ding, Y., Zhao, R., Qin, Z., Wu, Z., Wang, L., Liu, L., & Lu, W. (2019). Evolution of the corrosion product film on nickel-aluminum bronze and its corrosion behavior in 3.5 wt% NaCl solution. Materials, 12(2), 209.
  • Wharton, J. A., Barik, R. C., Kear, G., Wood, R. J. K., Stokes, K. R., & Walsh, F. C. (2005). The corrosion of nickel–aluminium bronze in seawater. Corrosion science, 47(12), 3336-3367.
  • Böhm, J., Linhardt, P., Strobl, S., Haubner, R., & Biezma, M. V. (2016). Microstructure of a heat treated nickel-aluminum bronze and its corrosion behavior in simulated fresh and sea water. Materials Performance and Characterization, 5(5).
  • Qin, Z., Zhang, Q., Luo, Q., Wu, Z., Shen, B., Liu, L., & Hu, W. (2018). Microstructure design to improve the corrosion and cavitation corrosion resistance of a nickel-aluminum bronze. Corrosion Science, 139, 255-266.
  • Huttunen-Saarivirta, E., Isotahdon, E., Metsäjoki, J., Salminen, T., Carpén, L., & Ronkainen, H. (2018). Tribocorrosion behaviour of aluminium bronze in 3.5 wt.% NaCl solution. Corrosion Science, 144, 207-223.
  • Powell, C., & Webster, P. (2019). Copper alloys. In Corrosion Performance of Metals for the Marine Environment EFC 63 (pp. 26-41). CRC Press.
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Metaller ve Alaşım Malzemeleri
Bölüm Araştırma Makaleleri
Yazarlar

Volkan Karakurt 0000-0001-8559-3949

Talip Çıtrak 0000-0002-5964-5423

Feyzanur Öztürk 0009-0008-1064-0905

Orçun Zığındere 0000-0003-2518-4400

Feriha Birol 0000-0003-0531-6015

Yayımlanma Tarihi 31 Temmuz 2025
Gönderilme Tarihi 13 Haziran 2024
Kabul Tarihi 3 Şubat 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 8 Sayı: 1