Image Enhancement and U-Net Based Brain Tumor Segmentation Using MRI
Yıl 2025,
Cilt: 8 Sayı: 1, 31 - 38, 31.07.2025
Shahd Hashim Hassan Abdalgadir
,
Mahmut Öztürk
Öz
Brain tumor is a very fatal health problem and unfortunately it is getting more common in modern society. Developing medical methods and technologies make possible to detect the disease earlier, slow down its progress and treat it. Early detection is very crucial for the success of treatment processes. Usage of image processing and artificial intelligence methods can help medics for early detection of the disease. In this study, a deep learning based enhanced image segmentation approach has been proposed to detect brain tumors. Segmentation was performed on the brain magnetic resonance (MR) images which were taken from a public dataset. Classical U-Net structure were employed at segmentation process because of its compatibility and success in medical image segmentation. Performance of the proposed model was increased with the help of image processing techniques used in pre- and post-processing stages. After using some image enhancement techniques as post-processing, a 0.89 of the dice coefficient, a 0.85 of the sensitivity and a 0.89 of the F-score were obtained.
Kaynakça
-
Hashemi, R., Walter G. B. and Christopher J. L. (1997). MRI: The Basics.
-
Blamire, A. M. (2008). The technology of MRI - The next 10 years. British Journal of Radiology. Vol. 81, no. 968. pp. 601–617. doi: 10.1259/bjr/96872829.
-
Gordillo, N., Montseny, E., and Sobrevilla, P. (2013). State of the art survey on MRI brain tumor segmentation. Magnetic Resonance Imaging, vol.31, no.8. pp.1426–1438. doi: 10.1016/j.mri.2013.05.002.
-
Akkus, Z., Galimzianova, A., Hoogi, A., Rubin, D. L., and Erickson, B. J. (2017). Deep Learning for Brain MRI Segmentation: State of the Art and Future Directions. Journal of Digital Imaging, vol. 30, no. 4, pp. 449–459. Springer New York LLC. doi: 10.1007/s10278-017-9983-4.
-
De Raad, K. B., et al. (2021). The effect of preprocessing on convolutional neural networks for medical image segmentation [Conference presentation]. International Symposium on Biomedical Imaging, IEEE Computer Society. pp. 655–658. doi: 10.1109/ISBI48211.2021.9433952.
-
Kondrateva, E., Druzhinina, P., Kurmukov, A., and Net, K. (2022). Do we really need all these preprocessing steps in brain MRI segmentation? [Conference presentation]. Medical Imaging with Deep Learning. Zürich, Switzerland. https://2022.midl.io/papers/b_s_14.
-
Furtado, P. (2021). Improving Deep Segmentation of Abdominal Organs MRI by Post-Processing. BioMedInformatics, vol. 1, no. 3, pp. 88–105. doi: 10.3390/biomedinformatics1030007.
-
Fatima, A., Shahid, A. R., Raza, B., Madni, T. M., and Janjua, U. I. (2020). State-of-the-Art Traditional to the Machine- and Deep-Learning-Based Skull Stripping Techniques, Models, and Algorithms. J Digit Imaging, vol. 33, no. 6, pp. 1443–1464. doi: 10.1007/s10278-020-00367-5.
-
Dong, H., Yang, G., Liu, F., Mo, Y., and Guo, Y. (2017). Automatic Brain Tumor Detection and Segmentation Using U-Net Based Fully Convolutional Networks. [Preprint]. Available: http://arxiv.org/abs/1705.03820
-
Lee, B., Yamanakkanavar, N., and Choi, J. Y. (2020). Automatic segmentation of brain MRI using a novel patch-wise U-net deep architecture. PLoS One, vol. 15, no. 8. doi: 10.1371/journal.pone.0236493
-
Ronneberger, O., Fischer, P., and Brox, T. (2015). U-Net: Convolutional Networks for Biomedical Image Segmentation. BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany.
-
https://www.kaggle.com/datasets/mateuszbuda/lgg-mri-segmentation
-
Despotović, I., Goossens, B., Philips, W. (2015). MRI segmentation of the human brain: challenges, methods, and applications. Comput Math Methods Med. 2015:450341. doi: 10.1155/2015/450341.
-
Harikumar, R., and Kumar, B. V. (2015). Performance analysis of neural networks for classification of medical images with wavelets as a feature extractor. International Journal of Imaging Systems and Technology, vol. 25.
MRG Kullanılarak Görüntü İyileştirme ve U-Net Tabanlı Beyin Tümörü Bölütlemesi
Yıl 2025,
Cilt: 8 Sayı: 1, 31 - 38, 31.07.2025
Shahd Hashim Hassan Abdalgadir
,
Mahmut Öztürk
Öz
Beyin tümörü oldukça ölümcül bir sağlık sorunudur ve ne yazık ki modern toplumda giderek yaygınlaşmaktadır. Gelişen tıbbi yöntem ve teknolojiler, hastalığın daha erken tespit edilmesini, ilerlemesinin yavaşlatılmasını ve tedavi edilmesini mümkün kılmaktadır. Tedavi süreçlerinin başarısı için erken teşhis çok önemlidir. Görüntü işleme ve yapay zeka yöntemlerinin kullanılması, sağlık görevlilerinin hastalığın erken tespitine yardımcı olabilir. Bu çalışmada, beyin tümörlerinin tespiti için derin öğrenme tabanlı geliştirilmiş bir görüntü bölütleme yaklaşımı önerilmiştir. Halka açık bir veri setinden alınan beyin manyetik rezonans (MR) görüntüleri üzerinde bölütleme yapılmıştır. Medikal görüntü bölütlemesine uygunluğu ve başarısı nedeniyle bölütleme işleminde klasik U-Net yapısı kullanılmıştır. Ön işleme ve son işleme aşamalarında kullanılan görüntü işleme teknikleri yardımıyla önerilen modelin performansı arttırılmıştır. Son işlem olarak bazı görüntü iyileştirme teknikleri uygulandıktan sonra, 0,89 zar katsayısı, 0,85 hassasiyet ve 0,89 F-puanı elde edilmiştir.
Kaynakça
-
Hashemi, R., Walter G. B. and Christopher J. L. (1997). MRI: The Basics.
-
Blamire, A. M. (2008). The technology of MRI - The next 10 years. British Journal of Radiology. Vol. 81, no. 968. pp. 601–617. doi: 10.1259/bjr/96872829.
-
Gordillo, N., Montseny, E., and Sobrevilla, P. (2013). State of the art survey on MRI brain tumor segmentation. Magnetic Resonance Imaging, vol.31, no.8. pp.1426–1438. doi: 10.1016/j.mri.2013.05.002.
-
Akkus, Z., Galimzianova, A., Hoogi, A., Rubin, D. L., and Erickson, B. J. (2017). Deep Learning for Brain MRI Segmentation: State of the Art and Future Directions. Journal of Digital Imaging, vol. 30, no. 4, pp. 449–459. Springer New York LLC. doi: 10.1007/s10278-017-9983-4.
-
De Raad, K. B., et al. (2021). The effect of preprocessing on convolutional neural networks for medical image segmentation [Conference presentation]. International Symposium on Biomedical Imaging, IEEE Computer Society. pp. 655–658. doi: 10.1109/ISBI48211.2021.9433952.
-
Kondrateva, E., Druzhinina, P., Kurmukov, A., and Net, K. (2022). Do we really need all these preprocessing steps in brain MRI segmentation? [Conference presentation]. Medical Imaging with Deep Learning. Zürich, Switzerland. https://2022.midl.io/papers/b_s_14.
-
Furtado, P. (2021). Improving Deep Segmentation of Abdominal Organs MRI by Post-Processing. BioMedInformatics, vol. 1, no. 3, pp. 88–105. doi: 10.3390/biomedinformatics1030007.
-
Fatima, A., Shahid, A. R., Raza, B., Madni, T. M., and Janjua, U. I. (2020). State-of-the-Art Traditional to the Machine- and Deep-Learning-Based Skull Stripping Techniques, Models, and Algorithms. J Digit Imaging, vol. 33, no. 6, pp. 1443–1464. doi: 10.1007/s10278-020-00367-5.
-
Dong, H., Yang, G., Liu, F., Mo, Y., and Guo, Y. (2017). Automatic Brain Tumor Detection and Segmentation Using U-Net Based Fully Convolutional Networks. [Preprint]. Available: http://arxiv.org/abs/1705.03820
-
Lee, B., Yamanakkanavar, N., and Choi, J. Y. (2020). Automatic segmentation of brain MRI using a novel patch-wise U-net deep architecture. PLoS One, vol. 15, no. 8. doi: 10.1371/journal.pone.0236493
-
Ronneberger, O., Fischer, P., and Brox, T. (2015). U-Net: Convolutional Networks for Biomedical Image Segmentation. BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany.
-
https://www.kaggle.com/datasets/mateuszbuda/lgg-mri-segmentation
-
Despotović, I., Goossens, B., Philips, W. (2015). MRI segmentation of the human brain: challenges, methods, and applications. Comput Math Methods Med. 2015:450341. doi: 10.1155/2015/450341.
-
Harikumar, R., and Kumar, B. V. (2015). Performance analysis of neural networks for classification of medical images with wavelets as a feature extractor. International Journal of Imaging Systems and Technology, vol. 25.