Araştırma Makalesi
BibTex RIS Kaynak Göster

Açısal Sapma Kontrolü için Mikroşerit İletim Hattı Kuplajlı Halka Rezonatör Tasarımı

Yıl 2025, Cilt: 8 Sayı: 1, 24 - 30, 31.07.2025
https://doi.org/10.55581/ejeas.1704369

Öz

Bu çalışmada, doğru açısal konum ölçümü sağlayan, eş merkezli olarak hizalanmış stator ve rotor bileşenlerine sahip düzlemsel bir mikrodalga açısal yer değiştirme sensörü sunulmaktadır. Sensör, iki eş merkezli halka rezonatör içeren çift bantlı bir mimariyle çalışarak açısal algılama performansını artırmaktadır. Yapı, her biri 40 mm × 40 mm boyutlarında ve 1.6 mm kalınlığında iki FR-4 baskılı devre kartı (PCB) üzerine gerçekleştirilmiştir. PCB’ler, üzerlerindeki iletken desenleri içeren katmanlar (yani mikroşerit yapıların bulunduğu yüzeyler) birbirine bakacak şekilde konumlandırılarak, güçlü elektromanyetik etkileşim ile doğru eş merkezli hizalama sağlanmaktadır. Rotor, üst PCB’nin alt yüzeyine desenlenmiş bir yarıklı halka rezonatörden oluşmakta olup, üst katmandaki dairesel boşluğa eş merkezli biçimde yerleştirilmektedir. Stator ise her iki PCB’nin dairesel açıklık dışındaki bölgelerinden oluşmakta; alt PCB üzerinde yer alan doğrusal mikroşerit iletim hattı, kapalı halka biçimindeki bir birincil rezonatör ile manyetik olarak bağlanmaktadır. Rotor üzerindeki yarıklı halka rezonatör, bu birincil rezonatörün tam üzerinde konumlanarak güçlü karşılıklı etkileşim sağlamaktadır. Simülasyon sonuçları, sensörün 2.17 GHz ile 3.57 GHz frekanslarında rezonans yaptığını ve 0° ile 90° arasında dinamik bir açısal algılama gerçekleştirebildiğini göstermektedir. Tam dalga elektromanyetik benzetim sonuçları, bu rezonanslarda sırasıyla 0.83 MHz/° ve 0.40 MHz/° mutlak açısal hassasiyet sunduğunu ortaya koymaktadır. Elde edilen bulgular, önerilen sensör yapısının, hassas açısal yer değiştirme ölçümü gerektiren endüstriyel ortamlar için yüksek potansiyele sahip olduğunu göstermektedir.

Kaynakça

  • Herrojo, C., Mata-Contreras, J., & Martín, F. (2017). Application of Split Ring Resonator (SRR) Loaded Transmission Lines to the Design of Angular Displacement and Velocity Sensors for Space Applications. IEEE Transactions on Microwave Theory and Techniques, 65(11), 4450–4460.
  • Wang, X., et al. (2023). MXene-Coated Planar Microwave Resonator Sensor for Ultrasensitive Humidity Monitoring. IEEE Sensors Journal, 23(8), 9042–9050.
  • Özbey, B., et al. (2014). Microwave Sensor for Detection of Solid Material Permittivity in Single Multilayer Samples with High Quality Factor. Sensors, 14(12), 22671–22683.
  • Özbey, B., et al. (2016). Wireless Measurement of Elastic and Plastic Deformation by a Metamaterial-Based Sensor. Sensors, 16(10), 19609–19621.
  • Aydin, C., et al. (2021). Microwave Sensor Loaded with Complementary Curved Ring Resonator for Material Permittivity Detection. IEEE Sensors Journal, 21(12), 13564–13572.
  • Chen, L., et al. (2021). A Microwave Sensor with Operating Band Selection to Detect Rotation and Proximity in the Rapid Prototyping Industry. IEEE Sensors Journal, 21(3), 3441–3448.
  • Ebrahimi, A., et al. (2015). Metamaterial-Inspired Rotation Sensor with Wide Dynamic Range. IEEE Sensors Journal, 15(8), 4621–4628.
  • Naqui, J., & Martín, F. (2013). Alignment and Position Sensors Based on Split Ring Resonators. Sensors, 12(9), 11790–11797.
  • Naqui, J., & Martín, F. (2014). Angular Displacement and Velocity Sensors Based on Electric-LC (ELC) Loaded Microstrip Lines. IEEE Sensors Journal, 14(4), 939–940.
  • Horestani, A. K., et al. (2013). Displacement Sensor Based on Diamond-Shaped Tapered Split Ring Resonator. IEEE Sensors Journal, 13(4), 1153–1160.
  • Yang, W., et al. (2023). An Angular Displacement Microwave Sensor With 360° Dynamic Range Using Multi-Mode Resonator. IEEE Sensors Journal, 23(14), 7214–7222.
  • Horestani, A. K., et al. (2013). Rotation Sensor Based on Horn-Shaped Split Ring Resonator. IEEE Sensors Journal, 13(8), 3014–3015.
  • Ozbey, B., et al. (2023). Directional-Coupler-Based Microwave Sensors for Differential Angular-Displacement Measurement. IEEE Sensors Journal, 23(17), 9984–9992.
  • Maleki Gargari, A., et al. (2018). A Wireless Metamaterial-Inspired Passive Rotation Sensor with Submilliradian Resolution. IEEE Sensors Journal, 18(11), 4482–4489.
  • Wang, H., et al. (2022). A Conversionless Angular Displacement Antenna Sensor Node Based on Microstrip Cross-Shaped Matching Network with Rotational Stub for RFID Applications. IEEE Transactions on Antennas and Propagation, 70(1), 799–804.
  • Wang, Y., et al. (2021). Group-Delay-Based Angular-Displacement Microwave Sensor Using Transversal Signal-Interference Principle. IEEE Microwave and Wireless Components Letters, 31(2), 153–156.
  • Albostan, U., et al. (2020). Detection Modalities of Displacement Sensors Based on Split Ring Resonators: Pros and Cons. Sensors, 20(22), 6703.
  • Horestani, A. K., et al. (2012). Rotation Sensing Based on the Symmetry Properties of an Open-Ended Microstrip Line Loaded with a Split Ring Resonator. Progress In Electromagnetics Research C, 26, 153–165.
  • Shen, M., et al. (2023). A Planar Microwave Angular Displacement Sensor Based on Microstrip Line Loaded Split Ring Resonators. IEEE Microwave and Wireless Technology Letters, 33(1), 55–58.
  • Martín, F., et al. (2023). Planar Microwave Sensors. Wiley-IEEE Press.
  • Maleki Gargari, A., et al. (2018). A Wireless Metamaterial-Inspired Passive Rotation Sensor with Sub-milliradian Resolution. IEEE Sensors Journal, 18(11), 4482–4489.

Compact Microstrip-Coupled Ring Resonator for Angular Displacement Detection

Yıl 2025, Cilt: 8 Sayı: 1, 24 - 30, 31.07.2025
https://doi.org/10.55581/ejeas.1704369

Öz

In this work, a planar microwave angular displacement sensor featuring concentric and precisely aligned stator and rotor components for accurate angular position measurement is presented. The sensor operates using a dual-band architecture incorporating two concentric loop resonators to enhance angular sensing performance. The structure is realized on two FR-4 printed circuit boards (PCBs), each measuring 40 mm × 40 mm with a thickness of 1.6 mm. The PCBs are arranged such that the conductive layers containing the microstrip patterns face each other, ensuring strong electromagnetic coupling and precise concentric alignment. The rotor consists of a split-ring resonator patterned on the underside of the upper PCB and is placed concentrically within a circular aperture on the top layer. The stator comprises all regions outside the circular apertures on both PCBs. The lower PCB includes a straight microstrip feed line magnetically coupled to a closed-loop primary resonator. The split-ring resonator on the rotor is positioned directly above the primary resonator, facilitating strong mutual coupling. Simulation results indicate resonances at 2.17 GHz and 3.57 GHz, demonstrating dynamic angular sensing capability over a 0° to 90° rotation range. Full-wave electromagnetic simulations reveal absolute angular sensitivities of 0.83 MHz/° and 0.40 MHz/° at the respective resonant frequencies. The findings indicate that the proposed sensor design holds significant potential for industrial applications requiring precise angular displacement measurements.

Kaynakça

  • Herrojo, C., Mata-Contreras, J., & Martín, F. (2017). Application of Split Ring Resonator (SRR) Loaded Transmission Lines to the Design of Angular Displacement and Velocity Sensors for Space Applications. IEEE Transactions on Microwave Theory and Techniques, 65(11), 4450–4460.
  • Wang, X., et al. (2023). MXene-Coated Planar Microwave Resonator Sensor for Ultrasensitive Humidity Monitoring. IEEE Sensors Journal, 23(8), 9042–9050.
  • Özbey, B., et al. (2014). Microwave Sensor for Detection of Solid Material Permittivity in Single Multilayer Samples with High Quality Factor. Sensors, 14(12), 22671–22683.
  • Özbey, B., et al. (2016). Wireless Measurement of Elastic and Plastic Deformation by a Metamaterial-Based Sensor. Sensors, 16(10), 19609–19621.
  • Aydin, C., et al. (2021). Microwave Sensor Loaded with Complementary Curved Ring Resonator for Material Permittivity Detection. IEEE Sensors Journal, 21(12), 13564–13572.
  • Chen, L., et al. (2021). A Microwave Sensor with Operating Band Selection to Detect Rotation and Proximity in the Rapid Prototyping Industry. IEEE Sensors Journal, 21(3), 3441–3448.
  • Ebrahimi, A., et al. (2015). Metamaterial-Inspired Rotation Sensor with Wide Dynamic Range. IEEE Sensors Journal, 15(8), 4621–4628.
  • Naqui, J., & Martín, F. (2013). Alignment and Position Sensors Based on Split Ring Resonators. Sensors, 12(9), 11790–11797.
  • Naqui, J., & Martín, F. (2014). Angular Displacement and Velocity Sensors Based on Electric-LC (ELC) Loaded Microstrip Lines. IEEE Sensors Journal, 14(4), 939–940.
  • Horestani, A. K., et al. (2013). Displacement Sensor Based on Diamond-Shaped Tapered Split Ring Resonator. IEEE Sensors Journal, 13(4), 1153–1160.
  • Yang, W., et al. (2023). An Angular Displacement Microwave Sensor With 360° Dynamic Range Using Multi-Mode Resonator. IEEE Sensors Journal, 23(14), 7214–7222.
  • Horestani, A. K., et al. (2013). Rotation Sensor Based on Horn-Shaped Split Ring Resonator. IEEE Sensors Journal, 13(8), 3014–3015.
  • Ozbey, B., et al. (2023). Directional-Coupler-Based Microwave Sensors for Differential Angular-Displacement Measurement. IEEE Sensors Journal, 23(17), 9984–9992.
  • Maleki Gargari, A., et al. (2018). A Wireless Metamaterial-Inspired Passive Rotation Sensor with Submilliradian Resolution. IEEE Sensors Journal, 18(11), 4482–4489.
  • Wang, H., et al. (2022). A Conversionless Angular Displacement Antenna Sensor Node Based on Microstrip Cross-Shaped Matching Network with Rotational Stub for RFID Applications. IEEE Transactions on Antennas and Propagation, 70(1), 799–804.
  • Wang, Y., et al. (2021). Group-Delay-Based Angular-Displacement Microwave Sensor Using Transversal Signal-Interference Principle. IEEE Microwave and Wireless Components Letters, 31(2), 153–156.
  • Albostan, U., et al. (2020). Detection Modalities of Displacement Sensors Based on Split Ring Resonators: Pros and Cons. Sensors, 20(22), 6703.
  • Horestani, A. K., et al. (2012). Rotation Sensing Based on the Symmetry Properties of an Open-Ended Microstrip Line Loaded with a Split Ring Resonator. Progress In Electromagnetics Research C, 26, 153–165.
  • Shen, M., et al. (2023). A Planar Microwave Angular Displacement Sensor Based on Microstrip Line Loaded Split Ring Resonators. IEEE Microwave and Wireless Technology Letters, 33(1), 55–58.
  • Martín, F., et al. (2023). Planar Microwave Sensors. Wiley-IEEE Press.
  • Maleki Gargari, A., et al. (2018). A Wireless Metamaterial-Inspired Passive Rotation Sensor with Sub-milliradian Resolution. IEEE Sensors Journal, 18(11), 4482–4489.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik Elektromanyetiği
Bölüm Araştırma Makaleleri
Yazarlar

Nazlı Merve Tezel 0009-0005-9959-7648

Merve Efe 0009-0009-8093-6610

Sena Esen Bayer Keskin 0000-0001-8309-3393

Nurhan Türker Tokan 0000-0002-8225-8966

Yayımlanma Tarihi 31 Temmuz 2025
Gönderilme Tarihi 22 Mayıs 2025
Kabul Tarihi 19 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 8 Sayı: 1