Derleme
BibTex RIS Kaynak Göster

Sectoral Sources, Industrial Use and Environmental Management of Microplastics: A Holistic Assessment

Yıl 2025, Cilt: 8 Sayı: 2, 28 - 35, 31.12.2025
https://doi.org/10.55581/ejeas.1715416

Öz

The aim of this study is to investigate the dual role of microplastics (MPs) as both widespread environmental contaminants and deliberately used functional materials across industrial sectors. It provides an integrated assessment of the sources, pathways, and applications of MPs, with a focus on their sector-specific dynamics. Microplastics, defined as synthetic polymer particles smaller than 5 mm, are emitted unintentionally through processes in industries such as cosmetics, textiles, food packaging, agriculture, and construction, often entering aquatic, terrestrial, and atmospheric ecosystems. Simultaneously, they are intentionally employed in various industrial applications including textiles, building materials, membrane and filtration technologies, medical systems, and energy production. This study critically evaluates both aspects by reviewing current literature and sectoral practices, emphasizing the advantages MPs provide—such as durability, lightweight structure, and chemical resistance—while also highlighting their persistent environmental footprint and risks to human health. These risks are amplified by their role as vectors for toxic pollutants, their bio-accumulative nature, and their long degradation times. The paper concludes that managing microplastic pollution demands a life cycle-oriented approach that spans from production to end-of-life, supported by innovation in biodegradable alternatives, stronger regulatory frameworks, and interdisciplinary environmental health research. Ultimately, the study contributes to the understanding of how industrial innovation can be aligned with sustainability and global environmental responsibility.

Kaynakça

  • Kumar, M. et al. (2025). Microplastics, their effects on ecosystems, and general strategies for mitigation. Environmental Pollution and Management, 2, 87–105.
  • Das, P., Barik, S. K., & Bal, M. (2025). Microplastic transport dynamics and the path forward with magnetic nanoparticle-based solutions. Journal of Environmental Management, 384, 125496. https://doi.org/10.1016/j.jenvman.2025.125496.
  • Singh, C. K., Sodhi, K. K., Saha, K., et al. (2025). Insight into the environmental impact of microplastics. Total Environment Microbiology, 1, 100009. https://doi.org/10.1016/j.temicr.2025.100009.
  • Kumar, P., Kumar, A., Kumar, D., Prajapati, K. B., Mahajan, A. K., Pant, D., Yadav, A., Giri, A., Manda, S., Bhandari, S. & Panjla, R. (2025). Microplastics influencing aquatic environment and human health: A review of source, determination, distribution, removal, degradation, management strategy and future perspective. Journal of Environmental Management, 375, 124249.
  • Ashokkumar, V. et al. (2025). Microplastic pollution: Critical analysis of global hotspots. Journal of Environmental Management, 381, 124995.
  • Li, Y. et al. (2025). Global distribution and ecological risk of microplastics in aquatic organisms. Journal of Hazardous Materials, 491, 137977.
  • Barai, D. P., Gajbhiye, S. L., Bhongade, Y. M., et al. (2025). Performance evaluation of existing and advanced processes for remediation of microplastics. Journal of Environmental Chemical Engineering, 13, 116194. https://doi.org/10.1016/j.jece.2025.116194.
  • Noornama, M., et al. (2024). Innovative solutions for the removal of microplastics from water. Marine Pollution Bulletin, 206, 116752. https://doi.org/10.1016/j.marpolbul.2024.116752.
  • Madirisha, M. M., Ikotun, B. D., & Onyari, E. K. (2025). Turning the tide on microplastic pollution with geopolymers. Environmental Research, 272, 121182. https://doi.org/10.1016/j.envres.2025.121182.
  • Li, H., Shen, M., Li, M., et al. (2024). Removal of microplastics and resistance genes in livestock and aquaculture wastewater. Journal of Environmental Chemical Engineering, 12, 113384. https://doi.org/10.1016/j.jece.2024.113384
  • Hamdhani, H., Saputri, D., & Suryana, I. (2023). Microplastic in Sediment from the Middle Segment of an Urban River of Samarinda City, East Kalimantan. Jurnal Ilmu Perikanan Tropis Nusantara (Nusantara Tropical Fisheries Science Journal), 2(2), 128-134. https://doi.org/10.30872/jipt.v2i2.679.
  • Wahyuni, N. S., Liza, C., Sudaryanto, A., Sulistia, S., Wahyono, I. B., Witama, R. O., ... & Aditya, H. R. (2024, September). Abundance of microplastics in Cisadane river-Indonesia. In IOP Conference Series: Earth and Environmental Science (Vol. 1388, No. 1, p. 012060). IOP Publishing. http://doi.org/10.1088/1755-1315/1388/1/012060.
  • Ningrum, P. T., Negoro, A. H. S., Indahyani, D. E., & Nurdiansyah, Y. (2023). Microplastic contamination in marine fish and shells in the coastal areas of Jember Regency, Indonesia. Jurnal Ilmiah Perikanan Dan Kelautan, 15(1), 201. http://doi.org/10.20473/jipk.v15i1.34888.
  • Townsend, K. R., Lu, H. C., Sharley, D. J., & Pettigrove, V. (2019). Associations between microplastic pollution and land use in urban wetland sediments. Environmental Science and Pollution Research, 26(22), 22551-22561. https://doi.org/10.1007/s11356-019-04885-w.
  • Mgbemena, N., Mgbo, V., Princewill, V., Ndukwe, G., Das, R., & Ilechukwu, I. (2024). Preliminary Investigation of Microplastics in Roadside Soils of Port Harcourt and Elele in Rivers State, Nigeria. Substantia, 8(2), 135-141. https://doi.org/10.36253/Substantia-2661.
  • Hunt, C. F. et al. (2021). Evaluating alternatives to plastic microbeads in cosmetics. Nature Sustainability, 4(4), 366–372.
  • Cole, M., Lindeque, P., Fileman, E. S., et al. (2011). Microplastics as contaminants in the marine environment: A review. Marine Pollution Bulletin, 62(12), 2588–2597. ttps://doi.org/10.1016/j.marpolbul.2011.09.025
  • Geueke, B., Groh, K., & Muncke, J. (2018). Food packaging in the circular economy: Overview of chemical safety aspects for commonly used materials. Journal of Cleaner Production, 193, 491–505. https://doi.org/10.1016/j.jclepro.2018.05.005.
  • GKGM – Gıda ve Kontrol Genel Müdürlüğü. (2023). Mikroplastiklerin İnsan ve Çevre Sağlığı Üzerindeki Etkileri Hakkında Bilimsel Görüş. T.C. Tarım ve Orman Bakanlığı, Risk Değerlendirme Daire Başkanlığı. [PDF dosyası]
  • Calero, M., Godoy, V., Quesada, L., & Martín-Lara, M. Á. (2021). Green strategies for microplastics reduction. Current Opinion in Green and Sustainable Chemistry, 28, 100442. https://doi.org/10.1016/j.cogsc.2020.100442.
  • Lusher, A., Hollman, P., & Mendoza-Hill, J. (2017). Microplastics in fisheries and aquaculture: Status of knowledge on their occurrence and implications for aquatic organisms and food safety. FAO Fisheries and Aquaculture Technical Paper No. 615. Rome: FAO.
  • Jadhav, E. B., Sankhla, M. S., Bhat, R. A., & Bhagat, D. S. (2021). Microplastics from food packaging: An overview of human consumption, health threats, and alternative solutions. Environmental Nanotechnology, Monitoring & Management, 16, 100608. https://doi.org/10.1016/j.enmm.2021.100608.
  • Yee, M. S. L., Hii, L. W., Looi, C. K., et al. (2021). Impact of microplastics and nanoplastics on human health. Nanomaterials, 11(2), 496. https://doi.org/10.3390/nano11020496.
  • Blackburn, K., & Green, D. (2022). The potential effects of microplastics on human health: What is known and what is unknown. Ambio, 51(4), 818–830. https://doi.org/10.1007/s13280-021-01554-0.
  • Sharma, R., & Bansal, P. P. (2016). Use of different forms of waste plastic in concrete – A review. Journal of Cleaner Production, 112, 473–482. https://doi.org/10.1016/j.jclepro.2015.08.042.
  • Luo, Z., Zhou, X., Su, Y., Wang, H., et al. (2021). Environmental occurrence, fate, impact, and potential solution of tire microplastics: Similarities and differences with tire wear particles. Science of The Total Environment, 795, 148902. https://doi.org/10.1016/j.scitotenv.2021.148902.
  • Jenkins, T., Persaud, B. D., Cowger, W., Szigeti, K., Roche, D. G., Clary, E., ... & Van Cappellen, P. (2022). Current state of microplastic pollution research data: trends in availability and sources of open data. Frontiers in Environmental Science, 10, 912107. https://doi.org/10.3389/fenvs.2022.912107.
  • Hung, C., Klasios, N., Zhu, X., Sedlak, M., Sutton, R., & Rochman, C. M. (2020). Methods matter: methods for sampling microplastic and other anthropogenic particles and their implications for monitoring and ecological risk assessment. Integrated environmental assessment and management, 17(1), 282-291. https://doi.org/10.1002/ieam.4325.
  • Cowger, W., Gray, A., Christiansen, S. H., DeFrond, H., Deshpande, A. D., Hemabessiere, L., ... & Primpke, S. (2020). Critical review of processing and classification techniques for images and spectra in microplastic research. Applied Spectroscopy, 74(9), 989-1010. https://doi.org/10.1177/0003702820929064.
  • Frias, J. P., & Nash, R. (2019). Microplastics: Finding a consensus on the definition. Marine pollution bulletin, 138, 145-147. https://doi.org/10.1016/j.marpolbul.2018.11.022.
  • Enyoh, C. E., Fadare, O. O., Paredes, M., Wang, Q., Verla, A. W., Shafea, L., & Chowdhury, T. (2022). An overview of physical, chemical and biological methods for removal of microplastics. Microplastics Pollution in Aquatic Media: Occurrence, Detection, and Removal, 273-289.
  • Alrbaihat, M. R., & Abu-Afifeh, Q. (2023). Eco-friendly microplastic removal through physical and chemical techniques: A review. Ann. Adv. Chem, 7, 14-24.
  • Tang, W., Li, H., Fei, L., Wei, B., Zhou, T., & Zhang, H. (2022). The removal of microplastics from water by coagulation: A comprehensive review. Science of The Total Environment, 851, 158224.
  • Ramos, R. L., dos Santos, C. R., Drumond, G. P., de Souza Santos, L. V., & Amaral, M. C. S. (2024). Critical review of microplastic in membrane treatment plant: Removal efficiency, environmental risk assessment, membrane fouling, and MP release. Chemical Engineering Journal, 480, 148052.
  • Akarsu, C., Kumbur, H., & Kideys, A. E. (2021). Removal of microplastics from wastewater through electrocoagulation-electroflotation and membrane filtration processes. Water Science and Technology, 84(7), 1648-1662.
  • Sacco, N. A., Zoppas, F. M., Devard, A., González Muñoz, M. D. P., García, G., & Marchesini, F. A. (2023). Recent advances in microplastics removal from water with special attention given to photocatalytic degradation: review of scientific research. Microplastics, 2(3), 278-303.
  • Fajar, M., Sembiring, E., & Handajani, M. (2022). The effect of Filter Media size and loading Rate to filter performance of removing microplastics using rapid sand filter. Journal of Engineering and Technological Sciences, 54(5), 220512.
  • Poerio, T., Piacentini, E., & Mazzei, R. (2019). Membrane processes for microplastic removal. Molecules, 24(22), 4148.
  • Talvitie, J., Mikola, A., Koistinen, A., & Setälä, O. (2017). Solutions to microplastic pollution–Removal of microplastics from wastewater effluent with advanced wastewater treatment technologies. Water research, 123, 401-407.
  • Colakoglu, E. B., Uyanik, I., Elbir, H., Sahinkaya, E., & Yurtsever, A. (2025). A novel gravity-driven dynamic membrane filtration reactor for microplastic removal from plastic recycling facility wastewater. Journal of Environmental Chemical Engineering, 13(2), 115793.
  • Xue, J., Peldszus, S., Van Dyke, M. I., & Huck, P. M. (2021). Removal of polystyrene microplastic spheres by alum-based coagulation-flocculation-sedimentation (CFS) treatment of surface waters. Chemical Engineering Journal, 422, 130023.
  • Oliveira, T. L., Bacelar, J. M., Teran, F. J. C., Cuba, R. M. F., & Porto, V. H. S. F. (2023). Chemical Coagulation Applied for the Removal of Polyethylene and Expanded Polystyrene Microplastics. Journal of Ecological Engineering, 24(11).
  • Wang, X. S., Song, H., Liu, Y. L., Pan, X. R., Zhang, H. C., Gao, Z., Kong, D. Z., Wang, R., Wang, L. & Ma, J. (2021). Quantitively analyzing the variation of micrometer-sized microplastic during water treatment with the flow cytometry-fluorescent beads method. Acs Es&T Engineering, 1(12), 1668-1677.
  • Ma, B., Xue, W., Ding, Y., Hu, C., Liu, H., & Qu, J. (2019). Removal characteristics of microplastics by Fe-based coagulants during drinking water treatment. Journal of Environmental Sciences, 78, 267-275.
  • Chorghe, D., Sari, M. A., & Chellam, S. (2017). Boron removal from hydraulic fracturing wastewater by aluminum and iron coagulation: mechanisms and limitations. Water research, 126, 481-487.
  • Wang, X., Ma, B., Bai, Y., Lan, H., Liu, H., & Qu, J. (2018). Comparison of the effects of aluminum and iron (III) salts on ultrafiltration membrane biofouling in drinking water treatment. Journal of environmental sciences, 63, 96-104.
  • Kimura, M., Matsui, Y., Kondo, K., Ishikawa, T. B., Matsushita, T., & Shirasaki, N. (2013). Minimizing residual aluminum concentration in treated water by tailoring properties of polyaluminum coagulants. Water research, 47(6), 2075-2084.
  • Sun, J., Dai, X., Wang, Q., Van Loosdrecht, M. C., & Ni, B. J. (2019). Microplastics in wastewater treatment plants: Detection, occurrence and removal. Water research, 152, 21-37.
  • Ahmed, S. F., Islam, N., Tasannum, N., Mehjabin, A., Momtahin, A., Chowdhury, A. A., Almomani, F. & Mofijur, M. (2024). Microplastic removal and management strategies for wastewater treatment plants. Chemosphere, 347, 140648.
  • Cristaldi, A., Fiore, M., Zuccarello, P., Oliveri Conti, G., Grasso, A., Nicolosi, I., Copat, C. & Ferrante, M. (2020). Efficiency of wastewater treatment plants (WWTPs) for microplastic removal: a systematic review. International journal of environmental research and public health, 17(21), 8014.
  • Long, Z., Pan, Z., Wang, W., Ren, J., Yu, X., Lin, L., ... & Jin, X. (2019). Microplastic abundance, characteristics, and removal in wastewater treatment plants in a coastal city of China. Water Research, 155, 255-265.
  • Gies, E. A., LeNoble, J. L., Noël, M., Etemadifar, A., Bishay, F., Hall, E. R., & Ross, P. S. (2018). Retention of microplastics in a major secondary wastewater treatment plant in Vancouver, Canada. Marine pollution bulletin, 133, 553-561.
  • Sol, D., Laca, A., Laca, A., & Díaz, M. (2020). Approaching the environmental problem of microplastics: Importance of WWTP treatments. Science of the Total Environment, 740, 140016.
  • Prata, J. C., Da Costa, J. P., Duarte, A. C., & Rocha-Santos, T. (2019). Methods for sampling and detection of microplastics in water and sediment: A critical review. TrAC Trends in Analytical Chemistry, 110, 150-159.
  • Bayo, J., Olmos, S., & López-Castellanos, J. (2020). Microplastics in an urban wastewater treatment plant: The influence of physicochemical parameters and environmental factors. Chemosphere, 238, 124593.
  • Edo, C., González-Pleiter, M., Leganés, F., Fernández-Piñas, F., & Rosal, R. (2020). Fate of microplastics in wastewater treatment plants and their environmental dispersion with effluent and sludge. Environmental Pollution, 259, 113837.

Mikroplastiklerin Sektörel Kaynakları, Endüstriyel Kullanımı ve Çevresel Yönetimi: Bütüncül Bir Değerlendirme

Yıl 2025, Cilt: 8 Sayı: 2, 28 - 35, 31.12.2025
https://doi.org/10.55581/ejeas.1715416

Öz

Bu çalışmanın amacı, mikroplastiklerin (MP'ler) hem yaygın çevre kirleticileri hem de endüstriyel sektörlerde kasıtlı olarak kullanılan işlevsel malzemeler olarak ikili rolünü araştırmaktır. MP’lerin kaynakları ve uygulamalarına ilişkin sektöre özgü dinamiklere odaklanarak bütünleşik bir değerlendirme sunmaktadır. 5 mm'den küçük sentetik polimer parçacıkları olarak tanımlanan MP’ler, kozmetik, tekstil, gıda ambalajı, tarım ve inşaat gibi endüstrilerdeki süreçler yoluyla kasıtsız olarak yayılır ve sıklıkla sucul, karasal ve atmosferik ekosistemlere girer. Aynı zamanda, tekstiller, yapı malzemeleri, membran ve filtrasyon teknolojileri, tıbbi sistemler ve enerji üretimi dahil olmak üzere çeşitli endüstriyel uygulamalarda kasıtlı olarak kullanılırlar. Bu çalışma, mevcut literatürü ve sektörel uygulamaları gözden geçirerek her iki yönü de eleştirel bir şekilde değerlendirir, MP'lerin sağladığı avantajları (dayanıklılık, hafif yapı ve kimyasal direnç gibi) vurgularken, aynı zamanda kalıcı çevresel ayak izlerini ve insan sağlığına yönelik riskleri de vurgulamaktadır. Bu riskler, toksik kirleticiler için vektörler olarak oynadıkları rol, biyolojik olarak birikebilen yapıları ve uzun bozunma süreleri nedeniyle daha da artar. Bu çalışma, MP kirliliğini yönetmenin, biyolojik olarak parçalanabilir alternatiflerdeki yenilikler, daha güçlü düzenleyici çerçeveler ve disiplinler arası çevre sağlığı araştırmalarıyla desteklenen, üretimden kullanım ömrünün sonuna kadar uzanan yaşam döngüsü odaklı bir yaklaşım gerektirdiği sonucuna varmaktadır. Sonuç olarak, çalışma endüstriyel yeniliğin sürdürülebilirlik ve küresel çevre sorumluluğuyla nasıl uyumlu hale getirilebileceğinin anlaşılmasına katkıda bulunmaktadır.

Kaynakça

  • Kumar, M. et al. (2025). Microplastics, their effects on ecosystems, and general strategies for mitigation. Environmental Pollution and Management, 2, 87–105.
  • Das, P., Barik, S. K., & Bal, M. (2025). Microplastic transport dynamics and the path forward with magnetic nanoparticle-based solutions. Journal of Environmental Management, 384, 125496. https://doi.org/10.1016/j.jenvman.2025.125496.
  • Singh, C. K., Sodhi, K. K., Saha, K., et al. (2025). Insight into the environmental impact of microplastics. Total Environment Microbiology, 1, 100009. https://doi.org/10.1016/j.temicr.2025.100009.
  • Kumar, P., Kumar, A., Kumar, D., Prajapati, K. B., Mahajan, A. K., Pant, D., Yadav, A., Giri, A., Manda, S., Bhandari, S. & Panjla, R. (2025). Microplastics influencing aquatic environment and human health: A review of source, determination, distribution, removal, degradation, management strategy and future perspective. Journal of Environmental Management, 375, 124249.
  • Ashokkumar, V. et al. (2025). Microplastic pollution: Critical analysis of global hotspots. Journal of Environmental Management, 381, 124995.
  • Li, Y. et al. (2025). Global distribution and ecological risk of microplastics in aquatic organisms. Journal of Hazardous Materials, 491, 137977.
  • Barai, D. P., Gajbhiye, S. L., Bhongade, Y. M., et al. (2025). Performance evaluation of existing and advanced processes for remediation of microplastics. Journal of Environmental Chemical Engineering, 13, 116194. https://doi.org/10.1016/j.jece.2025.116194.
  • Noornama, M., et al. (2024). Innovative solutions for the removal of microplastics from water. Marine Pollution Bulletin, 206, 116752. https://doi.org/10.1016/j.marpolbul.2024.116752.
  • Madirisha, M. M., Ikotun, B. D., & Onyari, E. K. (2025). Turning the tide on microplastic pollution with geopolymers. Environmental Research, 272, 121182. https://doi.org/10.1016/j.envres.2025.121182.
  • Li, H., Shen, M., Li, M., et al. (2024). Removal of microplastics and resistance genes in livestock and aquaculture wastewater. Journal of Environmental Chemical Engineering, 12, 113384. https://doi.org/10.1016/j.jece.2024.113384
  • Hamdhani, H., Saputri, D., & Suryana, I. (2023). Microplastic in Sediment from the Middle Segment of an Urban River of Samarinda City, East Kalimantan. Jurnal Ilmu Perikanan Tropis Nusantara (Nusantara Tropical Fisheries Science Journal), 2(2), 128-134. https://doi.org/10.30872/jipt.v2i2.679.
  • Wahyuni, N. S., Liza, C., Sudaryanto, A., Sulistia, S., Wahyono, I. B., Witama, R. O., ... & Aditya, H. R. (2024, September). Abundance of microplastics in Cisadane river-Indonesia. In IOP Conference Series: Earth and Environmental Science (Vol. 1388, No. 1, p. 012060). IOP Publishing. http://doi.org/10.1088/1755-1315/1388/1/012060.
  • Ningrum, P. T., Negoro, A. H. S., Indahyani, D. E., & Nurdiansyah, Y. (2023). Microplastic contamination in marine fish and shells in the coastal areas of Jember Regency, Indonesia. Jurnal Ilmiah Perikanan Dan Kelautan, 15(1), 201. http://doi.org/10.20473/jipk.v15i1.34888.
  • Townsend, K. R., Lu, H. C., Sharley, D. J., & Pettigrove, V. (2019). Associations between microplastic pollution and land use in urban wetland sediments. Environmental Science and Pollution Research, 26(22), 22551-22561. https://doi.org/10.1007/s11356-019-04885-w.
  • Mgbemena, N., Mgbo, V., Princewill, V., Ndukwe, G., Das, R., & Ilechukwu, I. (2024). Preliminary Investigation of Microplastics in Roadside Soils of Port Harcourt and Elele in Rivers State, Nigeria. Substantia, 8(2), 135-141. https://doi.org/10.36253/Substantia-2661.
  • Hunt, C. F. et al. (2021). Evaluating alternatives to plastic microbeads in cosmetics. Nature Sustainability, 4(4), 366–372.
  • Cole, M., Lindeque, P., Fileman, E. S., et al. (2011). Microplastics as contaminants in the marine environment: A review. Marine Pollution Bulletin, 62(12), 2588–2597. ttps://doi.org/10.1016/j.marpolbul.2011.09.025
  • Geueke, B., Groh, K., & Muncke, J. (2018). Food packaging in the circular economy: Overview of chemical safety aspects for commonly used materials. Journal of Cleaner Production, 193, 491–505. https://doi.org/10.1016/j.jclepro.2018.05.005.
  • GKGM – Gıda ve Kontrol Genel Müdürlüğü. (2023). Mikroplastiklerin İnsan ve Çevre Sağlığı Üzerindeki Etkileri Hakkında Bilimsel Görüş. T.C. Tarım ve Orman Bakanlığı, Risk Değerlendirme Daire Başkanlığı. [PDF dosyası]
  • Calero, M., Godoy, V., Quesada, L., & Martín-Lara, M. Á. (2021). Green strategies for microplastics reduction. Current Opinion in Green and Sustainable Chemistry, 28, 100442. https://doi.org/10.1016/j.cogsc.2020.100442.
  • Lusher, A., Hollman, P., & Mendoza-Hill, J. (2017). Microplastics in fisheries and aquaculture: Status of knowledge on their occurrence and implications for aquatic organisms and food safety. FAO Fisheries and Aquaculture Technical Paper No. 615. Rome: FAO.
  • Jadhav, E. B., Sankhla, M. S., Bhat, R. A., & Bhagat, D. S. (2021). Microplastics from food packaging: An overview of human consumption, health threats, and alternative solutions. Environmental Nanotechnology, Monitoring & Management, 16, 100608. https://doi.org/10.1016/j.enmm.2021.100608.
  • Yee, M. S. L., Hii, L. W., Looi, C. K., et al. (2021). Impact of microplastics and nanoplastics on human health. Nanomaterials, 11(2), 496. https://doi.org/10.3390/nano11020496.
  • Blackburn, K., & Green, D. (2022). The potential effects of microplastics on human health: What is known and what is unknown. Ambio, 51(4), 818–830. https://doi.org/10.1007/s13280-021-01554-0.
  • Sharma, R., & Bansal, P. P. (2016). Use of different forms of waste plastic in concrete – A review. Journal of Cleaner Production, 112, 473–482. https://doi.org/10.1016/j.jclepro.2015.08.042.
  • Luo, Z., Zhou, X., Su, Y., Wang, H., et al. (2021). Environmental occurrence, fate, impact, and potential solution of tire microplastics: Similarities and differences with tire wear particles. Science of The Total Environment, 795, 148902. https://doi.org/10.1016/j.scitotenv.2021.148902.
  • Jenkins, T., Persaud, B. D., Cowger, W., Szigeti, K., Roche, D. G., Clary, E., ... & Van Cappellen, P. (2022). Current state of microplastic pollution research data: trends in availability and sources of open data. Frontiers in Environmental Science, 10, 912107. https://doi.org/10.3389/fenvs.2022.912107.
  • Hung, C., Klasios, N., Zhu, X., Sedlak, M., Sutton, R., & Rochman, C. M. (2020). Methods matter: methods for sampling microplastic and other anthropogenic particles and their implications for monitoring and ecological risk assessment. Integrated environmental assessment and management, 17(1), 282-291. https://doi.org/10.1002/ieam.4325.
  • Cowger, W., Gray, A., Christiansen, S. H., DeFrond, H., Deshpande, A. D., Hemabessiere, L., ... & Primpke, S. (2020). Critical review of processing and classification techniques for images and spectra in microplastic research. Applied Spectroscopy, 74(9), 989-1010. https://doi.org/10.1177/0003702820929064.
  • Frias, J. P., & Nash, R. (2019). Microplastics: Finding a consensus on the definition. Marine pollution bulletin, 138, 145-147. https://doi.org/10.1016/j.marpolbul.2018.11.022.
  • Enyoh, C. E., Fadare, O. O., Paredes, M., Wang, Q., Verla, A. W., Shafea, L., & Chowdhury, T. (2022). An overview of physical, chemical and biological methods for removal of microplastics. Microplastics Pollution in Aquatic Media: Occurrence, Detection, and Removal, 273-289.
  • Alrbaihat, M. R., & Abu-Afifeh, Q. (2023). Eco-friendly microplastic removal through physical and chemical techniques: A review. Ann. Adv. Chem, 7, 14-24.
  • Tang, W., Li, H., Fei, L., Wei, B., Zhou, T., & Zhang, H. (2022). The removal of microplastics from water by coagulation: A comprehensive review. Science of The Total Environment, 851, 158224.
  • Ramos, R. L., dos Santos, C. R., Drumond, G. P., de Souza Santos, L. V., & Amaral, M. C. S. (2024). Critical review of microplastic in membrane treatment plant: Removal efficiency, environmental risk assessment, membrane fouling, and MP release. Chemical Engineering Journal, 480, 148052.
  • Akarsu, C., Kumbur, H., & Kideys, A. E. (2021). Removal of microplastics from wastewater through electrocoagulation-electroflotation and membrane filtration processes. Water Science and Technology, 84(7), 1648-1662.
  • Sacco, N. A., Zoppas, F. M., Devard, A., González Muñoz, M. D. P., García, G., & Marchesini, F. A. (2023). Recent advances in microplastics removal from water with special attention given to photocatalytic degradation: review of scientific research. Microplastics, 2(3), 278-303.
  • Fajar, M., Sembiring, E., & Handajani, M. (2022). The effect of Filter Media size and loading Rate to filter performance of removing microplastics using rapid sand filter. Journal of Engineering and Technological Sciences, 54(5), 220512.
  • Poerio, T., Piacentini, E., & Mazzei, R. (2019). Membrane processes for microplastic removal. Molecules, 24(22), 4148.
  • Talvitie, J., Mikola, A., Koistinen, A., & Setälä, O. (2017). Solutions to microplastic pollution–Removal of microplastics from wastewater effluent with advanced wastewater treatment technologies. Water research, 123, 401-407.
  • Colakoglu, E. B., Uyanik, I., Elbir, H., Sahinkaya, E., & Yurtsever, A. (2025). A novel gravity-driven dynamic membrane filtration reactor for microplastic removal from plastic recycling facility wastewater. Journal of Environmental Chemical Engineering, 13(2), 115793.
  • Xue, J., Peldszus, S., Van Dyke, M. I., & Huck, P. M. (2021). Removal of polystyrene microplastic spheres by alum-based coagulation-flocculation-sedimentation (CFS) treatment of surface waters. Chemical Engineering Journal, 422, 130023.
  • Oliveira, T. L., Bacelar, J. M., Teran, F. J. C., Cuba, R. M. F., & Porto, V. H. S. F. (2023). Chemical Coagulation Applied for the Removal of Polyethylene and Expanded Polystyrene Microplastics. Journal of Ecological Engineering, 24(11).
  • Wang, X. S., Song, H., Liu, Y. L., Pan, X. R., Zhang, H. C., Gao, Z., Kong, D. Z., Wang, R., Wang, L. & Ma, J. (2021). Quantitively analyzing the variation of micrometer-sized microplastic during water treatment with the flow cytometry-fluorescent beads method. Acs Es&T Engineering, 1(12), 1668-1677.
  • Ma, B., Xue, W., Ding, Y., Hu, C., Liu, H., & Qu, J. (2019). Removal characteristics of microplastics by Fe-based coagulants during drinking water treatment. Journal of Environmental Sciences, 78, 267-275.
  • Chorghe, D., Sari, M. A., & Chellam, S. (2017). Boron removal from hydraulic fracturing wastewater by aluminum and iron coagulation: mechanisms and limitations. Water research, 126, 481-487.
  • Wang, X., Ma, B., Bai, Y., Lan, H., Liu, H., & Qu, J. (2018). Comparison of the effects of aluminum and iron (III) salts on ultrafiltration membrane biofouling in drinking water treatment. Journal of environmental sciences, 63, 96-104.
  • Kimura, M., Matsui, Y., Kondo, K., Ishikawa, T. B., Matsushita, T., & Shirasaki, N. (2013). Minimizing residual aluminum concentration in treated water by tailoring properties of polyaluminum coagulants. Water research, 47(6), 2075-2084.
  • Sun, J., Dai, X., Wang, Q., Van Loosdrecht, M. C., & Ni, B. J. (2019). Microplastics in wastewater treatment plants: Detection, occurrence and removal. Water research, 152, 21-37.
  • Ahmed, S. F., Islam, N., Tasannum, N., Mehjabin, A., Momtahin, A., Chowdhury, A. A., Almomani, F. & Mofijur, M. (2024). Microplastic removal and management strategies for wastewater treatment plants. Chemosphere, 347, 140648.
  • Cristaldi, A., Fiore, M., Zuccarello, P., Oliveri Conti, G., Grasso, A., Nicolosi, I., Copat, C. & Ferrante, M. (2020). Efficiency of wastewater treatment plants (WWTPs) for microplastic removal: a systematic review. International journal of environmental research and public health, 17(21), 8014.
  • Long, Z., Pan, Z., Wang, W., Ren, J., Yu, X., Lin, L., ... & Jin, X. (2019). Microplastic abundance, characteristics, and removal in wastewater treatment plants in a coastal city of China. Water Research, 155, 255-265.
  • Gies, E. A., LeNoble, J. L., Noël, M., Etemadifar, A., Bishay, F., Hall, E. R., & Ross, P. S. (2018). Retention of microplastics in a major secondary wastewater treatment plant in Vancouver, Canada. Marine pollution bulletin, 133, 553-561.
  • Sol, D., Laca, A., Laca, A., & Díaz, M. (2020). Approaching the environmental problem of microplastics: Importance of WWTP treatments. Science of the Total Environment, 740, 140016.
  • Prata, J. C., Da Costa, J. P., Duarte, A. C., & Rocha-Santos, T. (2019). Methods for sampling and detection of microplastics in water and sediment: A critical review. TrAC Trends in Analytical Chemistry, 110, 150-159.
  • Bayo, J., Olmos, S., & López-Castellanos, J. (2020). Microplastics in an urban wastewater treatment plant: The influence of physicochemical parameters and environmental factors. Chemosphere, 238, 124593.
  • Edo, C., González-Pleiter, M., Leganés, F., Fernández-Piñas, F., & Rosal, R. (2020). Fate of microplastics in wastewater treatment plants and their environmental dispersion with effluent and sludge. Environmental Pollution, 259, 113837.
Toplam 56 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Çevre Kirliliği ve Önlenmesi, Katı ve Tehlikeli Atıklar
Bölüm Derleme
Yazarlar

Adem Yurtsever 0000-0001-6512-5232

Atakan Öngen 0000-0002-9043-7382

Barış Kiriş 0000-0002-0246-3733

Gönderilme Tarihi 6 Haziran 2025
Kabul Tarihi 30 Eylül 2025
Yayımlanma Tarihi 31 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 8 Sayı: 2