Derleme
BibTex RIS Kaynak Göster

Conversion of Plastic Waste into Value-Added Products through Pyrolysis: A Circular Economy Approach

Yıl 2025, Cilt: 8 Sayı: 1, 81 - 89, 31.07.2025
https://doi.org/10.55581/ejeas.1716406

Öz

The environmental impacts of plastic waste, coupled with its increasing quantities, have rendered sustainable recycling technologies an imperative. The present study conducts a thorough examination of the evaluation of plastic waste through pyrolysis. Pyrolysis is a promising method for obtaining gas, liquid, and solid products through the thermal decomposition of plastics under an inert atmosphere, offering potential for energy recovery and the production of chemical raw materials. The present study examines the impact of various parameters on product yields, including different types of plastic feedstock, pyrolysis conditions, reactor systems, heating regimes, and product storage methods. Furthermore, the physicochemical properties, potential applications, and refining requirements of the obtained products (pyrolysis oil, synthesis gas consisting of gas phase components, and char) are evaluated. In recent years, the role of artificial intelligence-supported modelling techniques in process optimization and studies on co-pyrolysis applications for sustainable fuel production have also been comprehensively examined. The findings suggest that pyrolysis technology can provide an effective solution for converting plastic waste in accordance with circular economy principles.

Kaynakça

  • Hasan, M. M., Haque, R., Jahirul, M. I., & Rasul, M. G. (2025). Pyrolysis of plastic waste for sustainable energy Recovery: Technological advancements and environmental impacts. Energy Conversion and Management, 326, 119511.
  • Vuppaladadiyam, S. S. V., Vuppaladadiyam, A. K., Sahoo, A., Urgunde, A., Murugavelh, S., Šrámek, V., ... & Pant, K. K. (2024). Waste to energy: Trending key challenges and current technologies in waste plastic management. Science of The Total Environment, 913, 169436.
  • Najahi, H., Banni, M., Nakad, M., Abboud, R., Assaf, J. C., Operato, L., ... & Hamd, W. (2025). Plastic pollution in food packaging systems: impact on human health, socioeconomic considerations and regulatory framework. Journal of Hazardous Materials Advances, 100667.
  • Saxena, S. (2024). Pyrolysis and beyond: Sustainable valorization of plastic waste. Applications in Energy and Combustion Science, 100311.
  • Badejo, O., Hernández, B., Vlachos, D. G., & Ierapetritou, M. G. (2024). Design of sustainable supply chains for managing plastic waste: The case of low density polyethylene. Sustainable Production and Consumption, 47, 460-473.
  • Kusmiyati, K., & Fudholi, A. (2025). A Systematic Literature Review on The Pyrolysis of Plastic Waste and Waste Oil for Fuel Production: Targeted Waste Management Solution for Central Java, Indonesia. Cleaner Waste Systems, 100308.
  • Hu, X., Ma, D., Zhang, G., Ling, M., Hu, Q., Liang, K., ... & Zheng, Y. (2023). Microwave-assisted pyrolysis of waste plastics for their resource reuse: A technical review. Carbon Resources Conversion, 6(3), 215-228.
  • Fan, S., Zhang, Y., Cui, L., Maqsood, T., & Nižetić, S. (2023). Cleaner production of aviation oil from microwave-assisted pyrolysis of plastic wastes. Journal of Cleaner Production, 390, 136102.
  • Martínez-Narro, G., Phan, H. H., Hassan, S., Beaumont, S. K., & Phan, A. N. (2024). Catalytic pyrolysis of plastic waste using metal-incorporated activated carbons for monomer recovery and carbon nanotube synthesis. Journal of Environmental Chemical Engineering, 12(2), 112226.
  • Wang, Y., Biddle, T., Jiang, C., Luong, T., Chen, R., Brown, S., ... & Hu, J. (2023). Microwave-driven upcycling of single-use plastics using zeolite catalyst. Chemical Engineering Journal, 465, 142918.
  • Ding, K., Liu, S., Huang, Y., Liu, S., Zhou, N., Peng, P., ... & Ruan, R. (2019). Catalytic microwave-assisted pyrolysis of plastic waste over NiO and HY for gasoline-range hydrocarbons production. Energy Conversion and Management, 196, 1316-1325.
  • Hahladakis, J. N., Velis, C. A., Weber, R., Iacovidou, E., & Purnell, P. (2018). An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. Journal of hazardous materials, 344, 179-199.
  • Jeswani, H., Krüger, C., Russ, M., Horlacher, M., Antony, F., Hann, S., & Azapagic, A. (2021). Life cycle environmental impacts of chemical recycling via pyrolysis of mixed plastic waste in comparison with mechanical recycling and energy recovery. Science of the Total Environment, 769, 144483.
  • Arielle, D. T. L., Nalume, W. G., & Gilbert, Y. (2024). A Review of the Life Cycle Analysis for Plastic Waste Pyrolysis. Open Journal of Polymer Chemistry, 14(3), 113-145.
  • Xayachak, T., Haque, N., Parthasarathy, R., King, S., Emami, N., Lau, D., & Pramanik, B. K. (2022). Pyrolysis for plastic waste management: An engineering perspective. Journal of Environmental Chemical Engineering, 10(6), 108865.
  • Junior, I. J. T., Alves, J. L. F., Brusamarello, C. Z., & Di Domenico, M. (2025). Impact of operational parameters on the yield of biochar, bio-oil, and pyrolytic gas in lignocellulosic biomass pyrolysis: A systematic review. Bioresource Technology Reports, 102155.
  • Maulinda, L., Husin, H., Rahman, N. A., Rosnelly, C. M., Nasution, F., Abidin, N. Z., & Yani, F. T. (2023). Effects of temperature and times on the product distribution of bio-oils derived from Typha latifolia pyrolysis as renewable energy. Results in Engineering, 18, 101163.
  • Huang, Z., Manzo, M., Xia, C., Cai, L., Zhang, Y., Liu, Z., ... & Lam, S. S. (2022). Effects of waste-based pyrolysis as heating source: meta-analyze of char yield and machine learning analysis. Fuel, 318, 123578.
  • Chen, W. H., Biswas, P. P., Kwon, E. E., Park, Y. K., Rajendran, S., Gnanasekaran, L., & Chang, J. S. (2023). Optimization of the process parameters of catalytic plastic pyrolysis for oil production using design of experiment approaches: A review. Chemical Engineering Journal, 471, 144695.
  • Quesada, L., Pérez, A., Godoy, V., Peula, F. J., Calero, M., & Blázquez, G. (2019). Optimization of the pyrolysis process of a plastic waste to obtain a liquid fuel using different mathematical models. Energy conversion and management, 188, 19-26.
  • Pang, D., Moliner, C., Wang, T., Sun, J., Zhang, X., Pang, Y., ... & Wang, W. (2025). A Mini Review on AI-driven Thermal Treatment of Solid Waste: Emission Control and Process Optimization. Green Energy and Resources, 100132.
  • Khandelwal, K., Nanda, S., & Dalai, A. K. (2024). Machine learning to predict the production of bio-oil, biogas, and biochar by pyrolysis of biomass: a review. Environmental Chemistry Letters, 22(6), 2669-2698.
  • Cahanap, D. R., Mohammadpour, J., Jalalifar, S., Mehrjoo, H., Norouzi-Apourvari, S., & Salehi, F. (2023). Prediction of three-phase product yield of biomass pyrolysis using artificial intelligence-based models. Journal of Analytical and Applied Pyrolysis, 172, 106015.
  • Akinpelu, D. A., Adekoya, O. A., Oladoye, P. O., Ogbaga, C. C., & Okolie, J. A. (2023). Machine learning applications in biomass pyrolysis: from biorefinery to end-of-life product management. Digital Chemical Engineering, 8, 100103.
  • Timilsina, M. S., Chaudhary, Y., Bhattarai, P., Uprety, B., & Khatiwada, D. (2024). Optimizing pyrolysis and Co-Pyrolysis of plastic and biomass using Artificial Intelligence. Energy Conversion and Management: X, 24, 100783.
  • Han, Y., Gholizadeh, M., Tran, C. C., Kaliaguine, S., Li, C. Z., Olarte, M., & Garcia-Perez, M. (2019). Hydrotreatment of pyrolysis bio-oil: A review. Fuel Processing Technology, 195, 106140.
  • Zhang, Y., Duan, D., Lei, H., Villota, E., & Ruan, R. (2019). Jet fuel production from waste plastics via catalytic pyrolysis with activated carbons. Applied Energy, 251, 113337.
  • Lin, X., Lei, H., Huo, E., Qian, M., Mateo, W., Zhang, Q., ... & Villota, E. (2020). Enhancing jet fuel range hydrocarbons production from catalytic co-pyrolysis of Douglas fir and low-density polyethylene over bifunctional activated carbon catalysts. Energy Conversion and Management, 211, 112757.
  • Tawai, A., Bardeeniz, S., Rochpuang, C., Amornraksa, S., Hussain, M. A., & Panjapornpon, C. (2025). Self-Driving Surrogate Modeling for Optimizing Targeted Bio-Oil Yield and Heating Value in Waste Biomass-Plastic Co-Pyrolysis. Journal of Analytical and Applied Pyrolysis, 107158.
  • Seah, C. C., Tan, C. H., Arifin, N. A., Hafriz, R. S. R. M., Salmiaton, A., Nomanbhay, S., & Shamsuddin, A. H. (2023). Co-pyrolysis of biomass and plastic: Circularity of wastes and comprehensive review of synergistic mechanism. Results in engineering, 17, 100989.
  • Nawaz, A., & Razzak, S. A. (2024). Co-pyrolysis of biomass and different plastic waste to reduce hazardous waste and subsequent production of energy products: A review on advancement, synergies, and future prospects. Renewable energy, 224, 120103.
  • Anshu, K., Kenttämaa, H. I., & Thengane, S. K. (2024). A comprehensive review on co-pyrolysis of lignocellulosic biomass and polystyrene. Renewable and Sustainable Energy Reviews, 205, 114832.
  • Nawaz, A., Haddad, H., Shah, M. A., Uddin, S., Hossain, M. M., & Razzak, S. A. (2024). Fueling sustainability: Co-pyrolysis of microalgae biomass and waste plastics for renewable energy and waste mitigation. Biomass and Bioenergy, 187, 107303.
  • Al-Rumaihi, A., Shahbaz, M., Mckay, G., Mackey, H., & Al-Ansari, T. (2022). A review of pyrolysis technologies and feedstock: A blending approach for plastic and biomass towards optimum biochar yield. Renewable and Sustainable Energy Reviews, 167, 112715.
  • Bhushan, D., Hooda, S., & Mondal, P. (2025). Co-pyrolysis of biomass and plastic wastes and application of machine learning for modelling of the process: A comprehensive review. Journal of the Energy Institute, 101973.
  • Wang, Z., Burra, K. G., Lei, T., & Gupta, A. K. (2021). Co-pyrolysis of waste plastic and solid biomass for synergistic production of biofuels and chemicals-A review. Progress in Energy and Combustion Science, 84, 100899.
  • Mishra, R., Ong, H. C., & Lin, C. W. (2023). Progress on co-processing of biomass and plastic waste for hydrogen production. Energy Conversion and Management, 284, 116983.
  • Adhikari, S., Nam, H., & Chakraborty, J. P. (2018). Conversion of solid wastes to fuels and chemicals through pyrolysis. Waste biorefinery, 239-263.
  • Saravanathamizhan, R., Perarasu, V. T., & Vetriselvan, K. (2023). Thermochemical conversion of biomass into valuable products and its modeling studies. In Green approach to alternative fuel for a sustainable future (pp. 137-152). Elsevier.
  • Gerasimov, G., Khaskhachikh, V., Larina, O., Sytchev, G., & Zaichenko, V. (2021). Pyrolytic methods of converting municipal solid waste into biofuel. In Handbook of Advanced Approaches towards Pollution Prevention and Control (pp. 137-156). Elsevier.
  • Kumar, L. R., Adama, N., Yellapu, S. K., Yan, S., Tyagi, R. D., & Drogui, P. (2021). Technology Transfer From Bench to Industry: Closing Loop. In Biomass, Biofuels, Biochemicals (pp. 699-720). Elsevier.
  • Qiu, B., Yang, C., Shao, Q., Liu, Y., & Chu, H. (2022). Recent advances on industrial solid waste catalysts for improving the quality of bio-oil from biomass catalytic cracking: a review. Fuel, 315, 123218.
  • Shah, A. T., Attique, S., Batool, M., Godini, H. R., & Goerke, O. (2021). Role of polyoxometalates in converting plastic waste into fuel oil. In Advanced Technology for the Conversion of Waste into Fuels and Chemicals (pp. 333-355). Woodhead Publishing.
  • Seo, M. W., Lee, S. H., Nam, H., Lee, D., Tokmurzin, D., Wang, S., & Park, Y. K. (2022). Recent advances of thermochemical conversion processes for biorefinery. Bioresource technology, 343, 126109.
  • Collard, F. X., Carrier, M., & Görgens, J. F. (2016). Fractionation of lignocellulosic material with pyrolysis processing. In Biomass fractionation technologies for a lignocellulosic feedstock based biorefinery (pp. 81-101). Elsevier.
  • Pattiya, A. (2018). Catalytic pyrolysis. Direct thermochemical liquefaction for energy applications, 29-64.
  • Marchetti, L., Guastaferro, M., Annunzi, F., Tognotti, L., Nicolella, C., & Vaccari, M. (2024). Two-stage thermal pyrolysis of plastic solid waste: Set-up and operative conditions investigation for gaseous fuel production. Waste Management, 179, 77-86.
  • Venturelli, M., Falletta, E., Pirola, C., Ferrari, F., Milani, M., & Montorsi, L. (2022). Experimental evaluation of the pyrolysis of plastic residues and waste tires. Applied Energy, 323, 119583.
  • Kim, D., Lee, S., Woo, S. Y., & Park, K. Y. (2025). Enhanced hydrogen production through temperature-optimized pyrolysis of mixed plastic waste for sustainable energy recovery. Process Safety and Environmental Protection, 196, 106934.
  • Krishna, J. J., Korobeinichev, O. P., & Vinu, R. (2019). Isothermal fast pyrolysis kinetics of synthetic polymers using analytical Pyroprobe. Journal of Analytical and Applied Pyrolysis, 139, 48-58.
  • Mortezaeikia, V., Tavakoli, O., & Khodaparasti, M. S. (2021). A review on kinetic study approach for pyrolysis of plastic wastes using thermogravimetric analysis. Journal of Analytical and Applied Pyrolysis, 160, 105340.
  • Jakić, M., Vrandečić, N. S., & Klarić, I. (2013). Thermal degradation of poly (vinyl chloride)/poly (ethylene oxide) blends: Thermogravimetric analysis. Polymer degradation and stability, 98(9), 1738-1743.
  • Zhang, W., Jia, J., Ding, Y., Jiang, G., Sun, L., & Lu, K. (2022). Effects of heating rate on thermal degradation behavior and kinetics of representative thermoplastic wastes. Journal of Environmental Management, 314, 115071.
  • Yang, H., de Wild, P., Lahive, C. W., Wang, Z., Deuss, P. J., & Heeres, H. J. (2022). Experimental studies on a combined pyrolysis/staged condensation/hydrotreatment approach to obtain biofuels and biobased chemicals. Fuel Processing Technology, 228, 107160.
  • Akubo, K., Nahil, M. A., & Williams, P. T. (2019). Pyrolysis-catalytic steam reforming of agricultural biomass wastes and biomass components for production of hydrogen/syngas. Journal of the Energy Institute, 92(6), 1987-1996.
  • Demirbas, A. (2004). Pyrolysis of municipal plastic wastes for recovery of gasoline-range hydrocarbons. Journal of Analytical and Applied Pyrolysis, 72(1), 97-102.
  • Valizadeh, S., Valizadeh, B., Seo, M. W., Choi, Y. J., Lee, J., Chen, W. H., ... & Park, Y. K. (2024). Recent advances in liquid fuel production from plastic waste via pyrolysis: Emphasis on polyolefins and polystyrene. Environmental Research, 246, 118154.
  • Palos, R., Gutierrez, A., Vela, F. J., Olazar, M., Arandes, J. M., & Bilbao, J. (2021). Waste refinery: the valorization of waste plastics and end-of-life tires in refinery units. A review. Energy & Fuels, 35(5), 3529-3557.
  • Wang, Y., Huang, L., Zhang, T., & Wang, Q. (2022). Hydrogen-rich syngas production from biomass pyrolysis and catalytic reforming using biochar-based catalysts. Fuel, 313, 123006.
  • Steynberg, A. P. (2004). Introduction to fischer-tropsch technology. In Studies in surface science and catalysis (Vol. 152, pp. 1-63). Elsevier.
  • Tabu, B., Hydrogen production from polymeric organic solids via atmospheric pressure nonthermal plasma, (2023), PhD, University of Massachusetts Lowell, Massachusetts.
  • Al-Qadri, A. A., Ahmed, U., Ahmad, N., Jameel, A. G. A., Zahid, U., & Naqvi, S. R. (2024). A review of hydrogen generation through gasification and pyrolysis of waste plastic and tires: Opportunities and challenges. International Journal of Hydrogen Energy, 77, 1185-1204.
  • Miandad, R., Barakat, M. A., Aburiazaiza, A. S., Rehan, M., & Nizami, A. S. (2016). Catalytic pyrolysis of plastic waste: A review. Process Safety and Environmental Protection, 102, 822-838.
  • Lopez, G., Artetxe, M., Amutio, M., Alvarez, J., Bilbao, J., & Olazar, M. (2018). Recent advances in the gasification of waste plastics. A critical overview. Renewable and Sustainable Energy Reviews, 82, 576-596.
  • Beneroso, D., Bermúdez, J. M., Arenillas, A., & Menéndez, J. A. (2015). Microwave pyrolysis of organic wastes for syngas-derived biopolymers production. Production of Biofuels and Chemicals with Microwave, 99-127.
  • Faisal, F., Rasul, M. G., Jahirul, M. I., & Chowdhury, A. A. (2023). Waste plastics pyrolytic oil is a source of diesel fuel: A recent review on diesel engine performance, emissions, and combustion characteristics. Science of the Total Environment, 886, 163756.
  • Faisal, F., Rasul, M. G., Chowdhury, A. A., Schaller, D., & Jahirul, M. I. (2023). Uncovering the differences: A comparison of properties of crude plastic pyrolytic oil and distilled and hydrotreated plastic diesel produced from waste and virgin plastics as automobile fuels. Fuel, 350, 128743.
  • Chai, C. H. T., Chan, C. Y., Heng, J. Z. X., Tang, K. Y., Loh, X. J., Li, Z., & Ye, E. (2023). Converting plastic waste to fuel and fine chemicals. In Circularity of Plastics (pp. 71-100). Elsevier.
  • Ayer, N. W., & Dias, G. (2018). Supplying renewable energy for Canadian cement production: Life cycle assessment of bioenergy from forest harvest residues using mobile fast pyrolysis units. Journal of Cleaner Production, 175, 237-250.
  • Onwudili, J. A., & Scaldaferri, C. A. (2023). Catalytic upgrading of intermediate pyrolysis bio-oil to hydrocarbon-rich liquid biofuel via a novel two-stage solvent-assisted process. Fuel, 352, 129015.
  • Li, F., Wang, N., He, X., Deng, M., Yuan, X., Zhang, H., ... & Ok, Y. S. (2025). Biochar-based catalytic upgrading of plastic waste into liquid fuels towards sustainability. Communications Earth & Environment, 6(1), 329.
  • Al-Rumaihi, A., Alherbawi, M., Mckay, G., Mackey, H., Parthasarathy, P., & Al-Ansari, T. (2023). Assessing plastic and biomass-based biochar's potential for carbon sequestration: an energy-water-environment approach. Frontiers in Sustainability, 4, 1200094.
  • Inyang, M. I., Gao, B., Yao, Y., Xue, Y., Zimmerman, A., Mosa, A., ... & Cao, X. (2016). A review of biochar as a low-cost adsorbent for aqueous heavy metal removal. Critical Reviews in Environmental Science and Technology, 46(4), 406-433.
  • Adeniyi, A. G., Iwuozor, K. O., Emenike, E. C., Ajala, O. J., Ogunniyi, S., & Muritala, K. B. (2024). Thermochemical co-conversion of biomass-plastic waste to biochar: a review. Green Chemical Engineering, 5(1), 31-49.
  • Qu, J., Shi, J., Wang, Y., Tong, H., Zhu, Y., Xu, L., ... & Zhang, Y. (2022). Applications of functionalized magnetic biochar in environmental remediation: A review. Journal of Hazardous Materials, 434, 128841.
  • Zein, S. H., Grogan, C. T., Yansaneh, O. Y., & Putranto, A. (2022). Pyrolysis of high-density polyethylene waste plastic to liquid fuels—Modelling and economic analysis. Processes, 10(8), 1503.
  • Jahirul, M. I., Rasul, M. G., Chowdhury, A. A., & Ashwath, N. (2012). Biofuels production through biomass pyrolysis—a technological review. Energies, 5(12), 4952-5001.
  • Panda, A. K., Singh, R. K., & Mishra, D. K. (2010). Thermolysis of waste plastics to liquid fuel: A suitable method for plastic waste management and manufacture of value added products—A world prospective. Renewable and Sustainable Energy Reviews, 14(1), 233-248.
  • Syamsiro, M., Saptoadi, H., Norsujianto, T., Noviasri, P., Cheng, S., Alimuddin, Z., & Yoshikawa, K. (2014). Fuel oil production from municipal plastic wastes in sequential pyrolysis and catalytic reforming reactors. Energy procedia, 47, 180-188.
  • Al-Salem, S. M., Lettieri, P., & Baeyens, J. (2009). Recycling and recovery routes of plastic solid waste (PSW): A review. Waste management, 29(10), 2625-2643.
  • Soomro, S. S., Hong, C., & Shaver, M. P. (2025). Quantification of recycled content in plastics: a review. Resources, Conservation and Recycling, 221, 108426.
  • Anwar, M. A., Suprihatin, S., Sasongko, N. A., Najib, M., Pranoto, B., Firmansyah, I., & Soekotjo, E. S. (2025). Sustainable waste management strategies for multilayer plastic in Indonesia. Cleaner and Responsible Consumption, 16, 100254.
  • Fayshal, M. A. (2024). Current practices of plastic waste management, environmental impacts, and potential alternatives for reducing pollution and improving management. Heliyon, 10(23).
  • Hendrickson, T. P., Bose, B., Vora, N., Huntington, T., Nordahl, S. L., Helms, B. A., & Scown, C. D. (2024). Paths to circularity for plastics in the United States. One Earth, 7(3), 520-531.
  • Dokl, M., Copot, A., Krajnc, D., Van Fan, Y., Vujanović, A., Aviso, K. B., ... & Čuček, L. (2024). Global projections of plastic use, end-of-life fate and potential changes in consumption, reduction, recycling and replacement with bioplastics to 2050. Sustainable Production and Consumption, 51, 498-518.
  • Agustina, E., Sembiring, E., Sakti, A. D., & Purba, L. H. F. (2025). Development of plastic waste generation distribution model using remote sensing data product and machine learning. Cleaner Waste Systems, 100324.
  • Fayshal, M. A. (2024). Current practices of plastic waste management, environmental impacts, and potential alternatives for reducing pollution and improving management. Heliyon, 10(23).
  • Tumu, K., Vorst, K., & Curtzwiler, G. (2023). Global plastic waste recycling and extended producer responsibility laws. Journal of Environmental Management, 348, 119242.
  • Soares, S., Serralha, F., Paz, M. C., Carriço, N., & Galatanu, S. V. (2024). Unveiling the data: An analysis of plastic waste with emphasis on the countries of the E³UDRES2 alliance. Heliyon.
  • Stoett, P., Scrich, V. M., Elliff, C. I., Andrade, M. M., Grilli, N. D. M., & Turra, A. (2024). Global plastic pollution, sustainable development, and plastic justice. World Development, 184, 106756.
  • Higuchi, C., & Isobe, A. (2024). Reduction scenarios of plastic waste emission guided by the probability distribution model to avoid additional ocean plastic pollution by 2050s. Marine Pollution Bulletin, 207, 116791.

Plastik Atıkların Pirolizle Katma Değerli Ürünlere Dönüştürülmesi: Döngüsel Ekonomi Yaklaşımı

Yıl 2025, Cilt: 8 Sayı: 1, 81 - 89, 31.07.2025
https://doi.org/10.55581/ejeas.1716406

Öz

Plastik atıkların çevresel etkileri ve artan miktarları, sürdürülebilir geri dönüşüm teknolojilerine duyulan ihtiyacı kritik hale getirmiştir. Bu çalışmada, plastik atıkların piroliz yöntemiyle değerlendirilmesi detaylı bir şekilde ele alınmıştır. Piroliz, plastiklerin inert atmosfer altında ısıl bozunmaya uğratılmasıyla gaz, sıvı ve katı ürünlerin elde edildiği, enerji geri kazanımı ve kimyasal hammadde üretimi açısından umut vadeden bir yöntemdir. Çalışmada; piroliz başlangıç malzemesi olarak farklı plastik türleri, piroliz parametreleri, reaktör sistemleri, ısıtma rejimleri ve ürün depolama teknikleri gibi değişkenlerin ürün verimleri üzerindeki etkileri tartışılmıştır. Ayrıca, elde edilen ürünlerin (piroliz yağı, gaz fazı bileşenlerinden oluşan sentez gaz ve çar) fizikokimyasal özellikleri, potansiyel kullanım alanları ve rafinasyon gereksinimleri değerlendirilmiştir. Son yıllarda yapay zekâ destekli modelleme tekniklerinin süreç optimizasyonundaki rolü ve ko-piroliz uygulamaları ile sürdürülebilir yakıt üretimi üzerine yapılan çalışmalar da kapsamlı şekilde incelenmiştir. Bulgular, piroliz teknolojisinin döngüsel ekonomi ilkeleri doğrultusunda plastik atıkların dönüştürülmesinde etkin bir çözüm sunabileceğini göstermektedir.

Kaynakça

  • Hasan, M. M., Haque, R., Jahirul, M. I., & Rasul, M. G. (2025). Pyrolysis of plastic waste for sustainable energy Recovery: Technological advancements and environmental impacts. Energy Conversion and Management, 326, 119511.
  • Vuppaladadiyam, S. S. V., Vuppaladadiyam, A. K., Sahoo, A., Urgunde, A., Murugavelh, S., Šrámek, V., ... & Pant, K. K. (2024). Waste to energy: Trending key challenges and current technologies in waste plastic management. Science of The Total Environment, 913, 169436.
  • Najahi, H., Banni, M., Nakad, M., Abboud, R., Assaf, J. C., Operato, L., ... & Hamd, W. (2025). Plastic pollution in food packaging systems: impact on human health, socioeconomic considerations and regulatory framework. Journal of Hazardous Materials Advances, 100667.
  • Saxena, S. (2024). Pyrolysis and beyond: Sustainable valorization of plastic waste. Applications in Energy and Combustion Science, 100311.
  • Badejo, O., Hernández, B., Vlachos, D. G., & Ierapetritou, M. G. (2024). Design of sustainable supply chains for managing plastic waste: The case of low density polyethylene. Sustainable Production and Consumption, 47, 460-473.
  • Kusmiyati, K., & Fudholi, A. (2025). A Systematic Literature Review on The Pyrolysis of Plastic Waste and Waste Oil for Fuel Production: Targeted Waste Management Solution for Central Java, Indonesia. Cleaner Waste Systems, 100308.
  • Hu, X., Ma, D., Zhang, G., Ling, M., Hu, Q., Liang, K., ... & Zheng, Y. (2023). Microwave-assisted pyrolysis of waste plastics for their resource reuse: A technical review. Carbon Resources Conversion, 6(3), 215-228.
  • Fan, S., Zhang, Y., Cui, L., Maqsood, T., & Nižetić, S. (2023). Cleaner production of aviation oil from microwave-assisted pyrolysis of plastic wastes. Journal of Cleaner Production, 390, 136102.
  • Martínez-Narro, G., Phan, H. H., Hassan, S., Beaumont, S. K., & Phan, A. N. (2024). Catalytic pyrolysis of plastic waste using metal-incorporated activated carbons for monomer recovery and carbon nanotube synthesis. Journal of Environmental Chemical Engineering, 12(2), 112226.
  • Wang, Y., Biddle, T., Jiang, C., Luong, T., Chen, R., Brown, S., ... & Hu, J. (2023). Microwave-driven upcycling of single-use plastics using zeolite catalyst. Chemical Engineering Journal, 465, 142918.
  • Ding, K., Liu, S., Huang, Y., Liu, S., Zhou, N., Peng, P., ... & Ruan, R. (2019). Catalytic microwave-assisted pyrolysis of plastic waste over NiO and HY for gasoline-range hydrocarbons production. Energy Conversion and Management, 196, 1316-1325.
  • Hahladakis, J. N., Velis, C. A., Weber, R., Iacovidou, E., & Purnell, P. (2018). An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. Journal of hazardous materials, 344, 179-199.
  • Jeswani, H., Krüger, C., Russ, M., Horlacher, M., Antony, F., Hann, S., & Azapagic, A. (2021). Life cycle environmental impacts of chemical recycling via pyrolysis of mixed plastic waste in comparison with mechanical recycling and energy recovery. Science of the Total Environment, 769, 144483.
  • Arielle, D. T. L., Nalume, W. G., & Gilbert, Y. (2024). A Review of the Life Cycle Analysis for Plastic Waste Pyrolysis. Open Journal of Polymer Chemistry, 14(3), 113-145.
  • Xayachak, T., Haque, N., Parthasarathy, R., King, S., Emami, N., Lau, D., & Pramanik, B. K. (2022). Pyrolysis for plastic waste management: An engineering perspective. Journal of Environmental Chemical Engineering, 10(6), 108865.
  • Junior, I. J. T., Alves, J. L. F., Brusamarello, C. Z., & Di Domenico, M. (2025). Impact of operational parameters on the yield of biochar, bio-oil, and pyrolytic gas in lignocellulosic biomass pyrolysis: A systematic review. Bioresource Technology Reports, 102155.
  • Maulinda, L., Husin, H., Rahman, N. A., Rosnelly, C. M., Nasution, F., Abidin, N. Z., & Yani, F. T. (2023). Effects of temperature and times on the product distribution of bio-oils derived from Typha latifolia pyrolysis as renewable energy. Results in Engineering, 18, 101163.
  • Huang, Z., Manzo, M., Xia, C., Cai, L., Zhang, Y., Liu, Z., ... & Lam, S. S. (2022). Effects of waste-based pyrolysis as heating source: meta-analyze of char yield and machine learning analysis. Fuel, 318, 123578.
  • Chen, W. H., Biswas, P. P., Kwon, E. E., Park, Y. K., Rajendran, S., Gnanasekaran, L., & Chang, J. S. (2023). Optimization of the process parameters of catalytic plastic pyrolysis for oil production using design of experiment approaches: A review. Chemical Engineering Journal, 471, 144695.
  • Quesada, L., Pérez, A., Godoy, V., Peula, F. J., Calero, M., & Blázquez, G. (2019). Optimization of the pyrolysis process of a plastic waste to obtain a liquid fuel using different mathematical models. Energy conversion and management, 188, 19-26.
  • Pang, D., Moliner, C., Wang, T., Sun, J., Zhang, X., Pang, Y., ... & Wang, W. (2025). A Mini Review on AI-driven Thermal Treatment of Solid Waste: Emission Control and Process Optimization. Green Energy and Resources, 100132.
  • Khandelwal, K., Nanda, S., & Dalai, A. K. (2024). Machine learning to predict the production of bio-oil, biogas, and biochar by pyrolysis of biomass: a review. Environmental Chemistry Letters, 22(6), 2669-2698.
  • Cahanap, D. R., Mohammadpour, J., Jalalifar, S., Mehrjoo, H., Norouzi-Apourvari, S., & Salehi, F. (2023). Prediction of three-phase product yield of biomass pyrolysis using artificial intelligence-based models. Journal of Analytical and Applied Pyrolysis, 172, 106015.
  • Akinpelu, D. A., Adekoya, O. A., Oladoye, P. O., Ogbaga, C. C., & Okolie, J. A. (2023). Machine learning applications in biomass pyrolysis: from biorefinery to end-of-life product management. Digital Chemical Engineering, 8, 100103.
  • Timilsina, M. S., Chaudhary, Y., Bhattarai, P., Uprety, B., & Khatiwada, D. (2024). Optimizing pyrolysis and Co-Pyrolysis of plastic and biomass using Artificial Intelligence. Energy Conversion and Management: X, 24, 100783.
  • Han, Y., Gholizadeh, M., Tran, C. C., Kaliaguine, S., Li, C. Z., Olarte, M., & Garcia-Perez, M. (2019). Hydrotreatment of pyrolysis bio-oil: A review. Fuel Processing Technology, 195, 106140.
  • Zhang, Y., Duan, D., Lei, H., Villota, E., & Ruan, R. (2019). Jet fuel production from waste plastics via catalytic pyrolysis with activated carbons. Applied Energy, 251, 113337.
  • Lin, X., Lei, H., Huo, E., Qian, M., Mateo, W., Zhang, Q., ... & Villota, E. (2020). Enhancing jet fuel range hydrocarbons production from catalytic co-pyrolysis of Douglas fir and low-density polyethylene over bifunctional activated carbon catalysts. Energy Conversion and Management, 211, 112757.
  • Tawai, A., Bardeeniz, S., Rochpuang, C., Amornraksa, S., Hussain, M. A., & Panjapornpon, C. (2025). Self-Driving Surrogate Modeling for Optimizing Targeted Bio-Oil Yield and Heating Value in Waste Biomass-Plastic Co-Pyrolysis. Journal of Analytical and Applied Pyrolysis, 107158.
  • Seah, C. C., Tan, C. H., Arifin, N. A., Hafriz, R. S. R. M., Salmiaton, A., Nomanbhay, S., & Shamsuddin, A. H. (2023). Co-pyrolysis of biomass and plastic: Circularity of wastes and comprehensive review of synergistic mechanism. Results in engineering, 17, 100989.
  • Nawaz, A., & Razzak, S. A. (2024). Co-pyrolysis of biomass and different plastic waste to reduce hazardous waste and subsequent production of energy products: A review on advancement, synergies, and future prospects. Renewable energy, 224, 120103.
  • Anshu, K., Kenttämaa, H. I., & Thengane, S. K. (2024). A comprehensive review on co-pyrolysis of lignocellulosic biomass and polystyrene. Renewable and Sustainable Energy Reviews, 205, 114832.
  • Nawaz, A., Haddad, H., Shah, M. A., Uddin, S., Hossain, M. M., & Razzak, S. A. (2024). Fueling sustainability: Co-pyrolysis of microalgae biomass and waste plastics for renewable energy and waste mitigation. Biomass and Bioenergy, 187, 107303.
  • Al-Rumaihi, A., Shahbaz, M., Mckay, G., Mackey, H., & Al-Ansari, T. (2022). A review of pyrolysis technologies and feedstock: A blending approach for plastic and biomass towards optimum biochar yield. Renewable and Sustainable Energy Reviews, 167, 112715.
  • Bhushan, D., Hooda, S., & Mondal, P. (2025). Co-pyrolysis of biomass and plastic wastes and application of machine learning for modelling of the process: A comprehensive review. Journal of the Energy Institute, 101973.
  • Wang, Z., Burra, K. G., Lei, T., & Gupta, A. K. (2021). Co-pyrolysis of waste plastic and solid biomass for synergistic production of biofuels and chemicals-A review. Progress in Energy and Combustion Science, 84, 100899.
  • Mishra, R., Ong, H. C., & Lin, C. W. (2023). Progress on co-processing of biomass and plastic waste for hydrogen production. Energy Conversion and Management, 284, 116983.
  • Adhikari, S., Nam, H., & Chakraborty, J. P. (2018). Conversion of solid wastes to fuels and chemicals through pyrolysis. Waste biorefinery, 239-263.
  • Saravanathamizhan, R., Perarasu, V. T., & Vetriselvan, K. (2023). Thermochemical conversion of biomass into valuable products and its modeling studies. In Green approach to alternative fuel for a sustainable future (pp. 137-152). Elsevier.
  • Gerasimov, G., Khaskhachikh, V., Larina, O., Sytchev, G., & Zaichenko, V. (2021). Pyrolytic methods of converting municipal solid waste into biofuel. In Handbook of Advanced Approaches towards Pollution Prevention and Control (pp. 137-156). Elsevier.
  • Kumar, L. R., Adama, N., Yellapu, S. K., Yan, S., Tyagi, R. D., & Drogui, P. (2021). Technology Transfer From Bench to Industry: Closing Loop. In Biomass, Biofuels, Biochemicals (pp. 699-720). Elsevier.
  • Qiu, B., Yang, C., Shao, Q., Liu, Y., & Chu, H. (2022). Recent advances on industrial solid waste catalysts for improving the quality of bio-oil from biomass catalytic cracking: a review. Fuel, 315, 123218.
  • Shah, A. T., Attique, S., Batool, M., Godini, H. R., & Goerke, O. (2021). Role of polyoxometalates in converting plastic waste into fuel oil. In Advanced Technology for the Conversion of Waste into Fuels and Chemicals (pp. 333-355). Woodhead Publishing.
  • Seo, M. W., Lee, S. H., Nam, H., Lee, D., Tokmurzin, D., Wang, S., & Park, Y. K. (2022). Recent advances of thermochemical conversion processes for biorefinery. Bioresource technology, 343, 126109.
  • Collard, F. X., Carrier, M., & Görgens, J. F. (2016). Fractionation of lignocellulosic material with pyrolysis processing. In Biomass fractionation technologies for a lignocellulosic feedstock based biorefinery (pp. 81-101). Elsevier.
  • Pattiya, A. (2018). Catalytic pyrolysis. Direct thermochemical liquefaction for energy applications, 29-64.
  • Marchetti, L., Guastaferro, M., Annunzi, F., Tognotti, L., Nicolella, C., & Vaccari, M. (2024). Two-stage thermal pyrolysis of plastic solid waste: Set-up and operative conditions investigation for gaseous fuel production. Waste Management, 179, 77-86.
  • Venturelli, M., Falletta, E., Pirola, C., Ferrari, F., Milani, M., & Montorsi, L. (2022). Experimental evaluation of the pyrolysis of plastic residues and waste tires. Applied Energy, 323, 119583.
  • Kim, D., Lee, S., Woo, S. Y., & Park, K. Y. (2025). Enhanced hydrogen production through temperature-optimized pyrolysis of mixed plastic waste for sustainable energy recovery. Process Safety and Environmental Protection, 196, 106934.
  • Krishna, J. J., Korobeinichev, O. P., & Vinu, R. (2019). Isothermal fast pyrolysis kinetics of synthetic polymers using analytical Pyroprobe. Journal of Analytical and Applied Pyrolysis, 139, 48-58.
  • Mortezaeikia, V., Tavakoli, O., & Khodaparasti, M. S. (2021). A review on kinetic study approach for pyrolysis of plastic wastes using thermogravimetric analysis. Journal of Analytical and Applied Pyrolysis, 160, 105340.
  • Jakić, M., Vrandečić, N. S., & Klarić, I. (2013). Thermal degradation of poly (vinyl chloride)/poly (ethylene oxide) blends: Thermogravimetric analysis. Polymer degradation and stability, 98(9), 1738-1743.
  • Zhang, W., Jia, J., Ding, Y., Jiang, G., Sun, L., & Lu, K. (2022). Effects of heating rate on thermal degradation behavior and kinetics of representative thermoplastic wastes. Journal of Environmental Management, 314, 115071.
  • Yang, H., de Wild, P., Lahive, C. W., Wang, Z., Deuss, P. J., & Heeres, H. J. (2022). Experimental studies on a combined pyrolysis/staged condensation/hydrotreatment approach to obtain biofuels and biobased chemicals. Fuel Processing Technology, 228, 107160.
  • Akubo, K., Nahil, M. A., & Williams, P. T. (2019). Pyrolysis-catalytic steam reforming of agricultural biomass wastes and biomass components for production of hydrogen/syngas. Journal of the Energy Institute, 92(6), 1987-1996.
  • Demirbas, A. (2004). Pyrolysis of municipal plastic wastes for recovery of gasoline-range hydrocarbons. Journal of Analytical and Applied Pyrolysis, 72(1), 97-102.
  • Valizadeh, S., Valizadeh, B., Seo, M. W., Choi, Y. J., Lee, J., Chen, W. H., ... & Park, Y. K. (2024). Recent advances in liquid fuel production from plastic waste via pyrolysis: Emphasis on polyolefins and polystyrene. Environmental Research, 246, 118154.
  • Palos, R., Gutierrez, A., Vela, F. J., Olazar, M., Arandes, J. M., & Bilbao, J. (2021). Waste refinery: the valorization of waste plastics and end-of-life tires in refinery units. A review. Energy & Fuels, 35(5), 3529-3557.
  • Wang, Y., Huang, L., Zhang, T., & Wang, Q. (2022). Hydrogen-rich syngas production from biomass pyrolysis and catalytic reforming using biochar-based catalysts. Fuel, 313, 123006.
  • Steynberg, A. P. (2004). Introduction to fischer-tropsch technology. In Studies in surface science and catalysis (Vol. 152, pp. 1-63). Elsevier.
  • Tabu, B., Hydrogen production from polymeric organic solids via atmospheric pressure nonthermal plasma, (2023), PhD, University of Massachusetts Lowell, Massachusetts.
  • Al-Qadri, A. A., Ahmed, U., Ahmad, N., Jameel, A. G. A., Zahid, U., & Naqvi, S. R. (2024). A review of hydrogen generation through gasification and pyrolysis of waste plastic and tires: Opportunities and challenges. International Journal of Hydrogen Energy, 77, 1185-1204.
  • Miandad, R., Barakat, M. A., Aburiazaiza, A. S., Rehan, M., & Nizami, A. S. (2016). Catalytic pyrolysis of plastic waste: A review. Process Safety and Environmental Protection, 102, 822-838.
  • Lopez, G., Artetxe, M., Amutio, M., Alvarez, J., Bilbao, J., & Olazar, M. (2018). Recent advances in the gasification of waste plastics. A critical overview. Renewable and Sustainable Energy Reviews, 82, 576-596.
  • Beneroso, D., Bermúdez, J. M., Arenillas, A., & Menéndez, J. A. (2015). Microwave pyrolysis of organic wastes for syngas-derived biopolymers production. Production of Biofuels and Chemicals with Microwave, 99-127.
  • Faisal, F., Rasul, M. G., Jahirul, M. I., & Chowdhury, A. A. (2023). Waste plastics pyrolytic oil is a source of diesel fuel: A recent review on diesel engine performance, emissions, and combustion characteristics. Science of the Total Environment, 886, 163756.
  • Faisal, F., Rasul, M. G., Chowdhury, A. A., Schaller, D., & Jahirul, M. I. (2023). Uncovering the differences: A comparison of properties of crude plastic pyrolytic oil and distilled and hydrotreated plastic diesel produced from waste and virgin plastics as automobile fuels. Fuel, 350, 128743.
  • Chai, C. H. T., Chan, C. Y., Heng, J. Z. X., Tang, K. Y., Loh, X. J., Li, Z., & Ye, E. (2023). Converting plastic waste to fuel and fine chemicals. In Circularity of Plastics (pp. 71-100). Elsevier.
  • Ayer, N. W., & Dias, G. (2018). Supplying renewable energy for Canadian cement production: Life cycle assessment of bioenergy from forest harvest residues using mobile fast pyrolysis units. Journal of Cleaner Production, 175, 237-250.
  • Onwudili, J. A., & Scaldaferri, C. A. (2023). Catalytic upgrading of intermediate pyrolysis bio-oil to hydrocarbon-rich liquid biofuel via a novel two-stage solvent-assisted process. Fuel, 352, 129015.
  • Li, F., Wang, N., He, X., Deng, M., Yuan, X., Zhang, H., ... & Ok, Y. S. (2025). Biochar-based catalytic upgrading of plastic waste into liquid fuels towards sustainability. Communications Earth & Environment, 6(1), 329.
  • Al-Rumaihi, A., Alherbawi, M., Mckay, G., Mackey, H., Parthasarathy, P., & Al-Ansari, T. (2023). Assessing plastic and biomass-based biochar's potential for carbon sequestration: an energy-water-environment approach. Frontiers in Sustainability, 4, 1200094.
  • Inyang, M. I., Gao, B., Yao, Y., Xue, Y., Zimmerman, A., Mosa, A., ... & Cao, X. (2016). A review of biochar as a low-cost adsorbent for aqueous heavy metal removal. Critical Reviews in Environmental Science and Technology, 46(4), 406-433.
  • Adeniyi, A. G., Iwuozor, K. O., Emenike, E. C., Ajala, O. J., Ogunniyi, S., & Muritala, K. B. (2024). Thermochemical co-conversion of biomass-plastic waste to biochar: a review. Green Chemical Engineering, 5(1), 31-49.
  • Qu, J., Shi, J., Wang, Y., Tong, H., Zhu, Y., Xu, L., ... & Zhang, Y. (2022). Applications of functionalized magnetic biochar in environmental remediation: A review. Journal of Hazardous Materials, 434, 128841.
  • Zein, S. H., Grogan, C. T., Yansaneh, O. Y., & Putranto, A. (2022). Pyrolysis of high-density polyethylene waste plastic to liquid fuels—Modelling and economic analysis. Processes, 10(8), 1503.
  • Jahirul, M. I., Rasul, M. G., Chowdhury, A. A., & Ashwath, N. (2012). Biofuels production through biomass pyrolysis—a technological review. Energies, 5(12), 4952-5001.
  • Panda, A. K., Singh, R. K., & Mishra, D. K. (2010). Thermolysis of waste plastics to liquid fuel: A suitable method for plastic waste management and manufacture of value added products—A world prospective. Renewable and Sustainable Energy Reviews, 14(1), 233-248.
  • Syamsiro, M., Saptoadi, H., Norsujianto, T., Noviasri, P., Cheng, S., Alimuddin, Z., & Yoshikawa, K. (2014). Fuel oil production from municipal plastic wastes in sequential pyrolysis and catalytic reforming reactors. Energy procedia, 47, 180-188.
  • Al-Salem, S. M., Lettieri, P., & Baeyens, J. (2009). Recycling and recovery routes of plastic solid waste (PSW): A review. Waste management, 29(10), 2625-2643.
  • Soomro, S. S., Hong, C., & Shaver, M. P. (2025). Quantification of recycled content in plastics: a review. Resources, Conservation and Recycling, 221, 108426.
  • Anwar, M. A., Suprihatin, S., Sasongko, N. A., Najib, M., Pranoto, B., Firmansyah, I., & Soekotjo, E. S. (2025). Sustainable waste management strategies for multilayer plastic in Indonesia. Cleaner and Responsible Consumption, 16, 100254.
  • Fayshal, M. A. (2024). Current practices of plastic waste management, environmental impacts, and potential alternatives for reducing pollution and improving management. Heliyon, 10(23).
  • Hendrickson, T. P., Bose, B., Vora, N., Huntington, T., Nordahl, S. L., Helms, B. A., & Scown, C. D. (2024). Paths to circularity for plastics in the United States. One Earth, 7(3), 520-531.
  • Dokl, M., Copot, A., Krajnc, D., Van Fan, Y., Vujanović, A., Aviso, K. B., ... & Čuček, L. (2024). Global projections of plastic use, end-of-life fate and potential changes in consumption, reduction, recycling and replacement with bioplastics to 2050. Sustainable Production and Consumption, 51, 498-518.
  • Agustina, E., Sembiring, E., Sakti, A. D., & Purba, L. H. F. (2025). Development of plastic waste generation distribution model using remote sensing data product and machine learning. Cleaner Waste Systems, 100324.
  • Fayshal, M. A. (2024). Current practices of plastic waste management, environmental impacts, and potential alternatives for reducing pollution and improving management. Heliyon, 10(23).
  • Tumu, K., Vorst, K., & Curtzwiler, G. (2023). Global plastic waste recycling and extended producer responsibility laws. Journal of Environmental Management, 348, 119242.
  • Soares, S., Serralha, F., Paz, M. C., Carriço, N., & Galatanu, S. V. (2024). Unveiling the data: An analysis of plastic waste with emphasis on the countries of the E³UDRES2 alliance. Heliyon.
  • Stoett, P., Scrich, V. M., Elliff, C. I., Andrade, M. M., Grilli, N. D. M., & Turra, A. (2024). Global plastic pollution, sustainable development, and plastic justice. World Development, 184, 106756.
  • Higuchi, C., & Isobe, A. (2024). Reduction scenarios of plastic waste emission guided by the probability distribution model to avoid additional ocean plastic pollution by 2050s. Marine Pollution Bulletin, 207, 116791.
Toplam 91 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Malzeme Bilimi ve Teknolojileri, Polimerler ve Plastikler
Bölüm Derlemeler
Yazarlar

Eda Ergün Songül 0000-0002-1123-502X

Melek Cumbul Altay 0000-0003-3739-7518

Yayımlanma Tarihi 31 Temmuz 2025
Gönderilme Tarihi 10 Haziran 2025
Kabul Tarihi 11 Temmuz 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 8 Sayı: 1