Araştırma Makalesi
BibTex RIS Kaynak Göster

NFC Doplu Titania Fotokatalizörünün Çorlu Evsel Atıksu Giriş İnert KOİ fraksiyonu Üzerindeki Etkisinin Değerlendirilmesi

Yıl 2019, Cilt: 2 Sayı: 2, 35 - 40, 31.12.2019

Öz

Bu makalede; antibiyotik,
renk gibi gelişmekte olan kirleticilerin gideriminde bir fotokatalist olarak
etkinliği kanıtlanmış NFC-doplu Titanyumun, Çorlu ilçesi evsel atıksu arıtma
tesisi giriş suyunda biyolojik olarak parçalanamayan KOİ fraksiyonu üzerindeki etkisini
belirlemeye yönelik deneysel çalışmalar yürütülmüştür. NFC-doplu titanyuma
maruz kalan (ham + fotokatalist) ve maruz kalmayan (ham) atık suların SI ve
XI bileşenlerinin belirlenmesi, süzülen atık su ile aynı
konsantrasyonda hazırlanan glikoz reaktörüne paralel olarak çalışan hem ham hem
de filtrelenmiş atıksu reaktörlerinde gerçekleştirilen deney yöntemine
dayandırılmıştır. Bütün reaktörler kesikli modda 30 gün boyunca
çalıştırılmıştır. Konvansiyonel karakterizasyon sonuçlarına göre, incelenen
evsel ham atıksuyun toplam ve çözünmüş KOİ değerleri sırasıyla 535 mg/l ve 315
mg/l olarak  ölçülmüş ve
ST0/CT0
oranı %59 olarak hesaplanmıştır. Ayrıca, deneysel çalışma sonunda
fotokatalist maruziyeti öncesi ve sonrası COD giderim verimi toplam KOİ için
sırasıyla %67 ve %60, çözünmüş KOİ için %77 ve %75 olarak hesaplanmıştır. Her
iki reaktördeki atıksuların inert KOİ fraksiyonları ise sırasıyla Çözünmüş
İnert KOİ (SI0) için 23 mg /l ve 9 mg/l, Partiküler inert KOİ (XI0)
için 56 mg /l ve 60 mg/l ve CI0/CT0 oranı da %15 ve %13 olarak
hesaplanmıştır. Tüm bu sonuçlar göstermektedir ki; giriş ham atıksuyunun
fotokataliste maruziyetinden 30 gün sonra, her iki reaktörde inert toplam giriş
KOİ fraksiyonlarında önemli bir değişim gözlemlenmemesine ragmen, ham +
fotokatalist atıksu reaktöründe çözünmüş inert kısmın %2 azaldığı, partiküler
inert kısmın da %2 arttığı görülmüştür. Bunun nedeni NFC-doplu Titanyumun
adsorbsiyon etkisi olarak düşünülebilir. 

Kaynakça

  • [1] Wentze, M.C., Mbewe, A., Lakay, M.T., Ekama, G.A. (1999). Batch test for characterisation of the carbonaceous materials in municipal wastewaters, Water SA., 25, 327–336.
  • [2] Henze, M., Van Loosdrecht, M.C., Ekama, G.A., Brdjandnovic, D. (2008). Biological Wastewater Treatment—Principles, Modeling and Design; IWA Publishing: London, UK.
  • [3] Carmen, Z., Daniela, S.(2012).Textile organic dyes—Characteristics, polluting effects and separation/elimination procedures from industrial effluents—A critical overview. In Organic Pollutants Ten Years after the Stockholm Convention—Environmental and Analytical Update; InTech Euro: Rijeka, Croatia, 55–85.
  • [4] Takahashi, N., Kumagai, T. (2006). Removal of dissolved organic carbon and color from dyeing wastewater by pre-ozonation and subsequent biological treatment. Ozone Sci. Eng., 28, 199–205. [CrossRef]
  • [5] Bae,W., Won, H., Hwang, B., Toledo, R.A., Chung, J.W., Kwon, K., Shim, H. (2015) Characterization of refractory matters in dyeing wastewater during a full-scale Fenton process following pure-oxygen activated sludge treatment. J. Hazard. Mater. 287, 421–428. [CrossRef] [PubMed]
  • [6] Lindholm-Lehto, P.C., Knuutinen, J.S., Ahkola, H.S.J., Herve, S.H. (2015) .Refractory organic pollutants and toxicity in pulp and paper mill wastewaters. Environ. Sci. Pollut. Res., 22, 6473–6499. [CrossRef] [PubMed]
  • [7] Carstea, F.M., Bridgeman, J., Baker, A., Reynolds, D.M. (2016). Fluorescence spectroscopy for wastewater monitoring:A review. Water Res., 95, 205–219. [CrossRef] [PubMed]
  • [8] Ata R., Yıldız Töre G. (2019) Characterization and removal of antibiotic residues by NFC-doped photocatalytic oxidation from domestic and industrial secondary treated wastewaters in Meric-Ergene Basin and reuse assessment for irrigation, Journal of Env. Management, 233, 673-680.
  • [9] Ubay Çokgör, E., Orhon, D.,Sözen, S. (1999) Evsel ve Endüstriyel Atıksularda KOI Bileşenleri, SKKD., 9 (2), 31-39.
  • [10] Yıldız G. (2005). Characterization and biological treatability ofacrylic and polyamid fiber based carpet finishing wastewater, phD Thesis, İstanbul Technical University, İstanbul.
  • [11] Orhon, D. and Artan, N. (1994) Modelling of Activated Sludge Systems, Technomic Publishing Co. Inc., USA.
  • [12] Henze, M. (1992). Characterization of Wastewater For Modelling of Activated Sludge Processes, Water Sci. Technol., 25 (6),1-15.
  • [13] Plosz, B.G., Vogelsang, C., Macrae, K., Heiaas, H., Lopez, A., Liltved, H., Langford, K. (2010). The BIOZO process—A biofilm system combined with ozonation: Occurrence of xenobiotic organic micro-pollutants in and removal of polycyclic aromatic hydrocarbons and nitrogen from landfill leachate. Water Sci. Technol., 61, 3188–3197. [CrossRef] [PubMed]
  • [14] Singh S., Singh P.K., Mahalingam H. (2015). An effective and low-cost TiO2/polystyrene floating photocatalyst for environmental remediation International Journal of Environmental Research, 9, 535-544.
  • [15] Asahi R., Morikawa T., Ohwaki T., Aoki K., Taga Y., (2001). Visible-light photocatalysis in nitrogen doped titanium oxides, Science, 293,269-271.
  • [16] El-Sheikh S.M., Zhang G., El-Hosainy H.M., Ismail A.A., O'Shea, P. Falaras K.E., Kontos A.G., DDionysiou.D. (2014). High performance sulfur, nitrogen and carbon doped mesoporous anatase-brookite TiO2 photocatalyst for the removal of microcystin-LR under visible light irradiation, Journal of Hazardous Materials, 280,723-733.
  • [17] Sacco O., Stoller M., Vaiano V., Ciambelli P., Chianese A., Sannino D. (2012). Photocatalytic Degradation of Organic Dyes under Visible Light on N-Doped TiO2 Photocatalysts, International Journal of Photoenergy, Article ID 626759, 8 pages http://dx.doi.org/10.1155/2012/626759, Volume 2012.
  • [18] Devi L.G., Kavitha R. (2013). A review on non metal ion doped titania for the photocatalytic degradation of organic pollutants under UV/solar light: Role of photogenerated charge carrier dynamics in enhancing the activity, Applied Catalysis B: Environmental, 140-141,559-587.
  • [19] APHA (1998). Standard Methods for the Examination of Water and Wastewater, 1998. 20th edn, American Public Health Association/American Water Works Association/Water Environment Federation, Washington DC, USA.
  • [20] Orhon, D., Karahan, Ö., and Sözen, S. (1999). The effect of residual microbial products on the experimental assessment of the particulate inert COD in wastewaters, Wat. Res.,33 (14), 3191-3203.

Evaluation the Impact of NFC-dopped Titania Photocatalyst on Initial Inert COD Fraction of Çorlu Town Domestic Wastewater

Yıl 2019, Cilt: 2 Sayı: 2, 35 - 40, 31.12.2019

Öz

In this paper, experimental studies were carried out to determine the
impact of NFC dopped Titania, which is proven success in emerging pollutants
such as antibiotic and color removal as a photocatalyst, on influent
non-biodegradable COD fraction of Çorlu town domestic wastewater treatment
plant.
The determination of SI and XI components
of wastewaters which are exposed (raw + photocatalyst) and unexposed (raw) to
the NFC-dopped titania, are based on the experimental method carried out in
both raw and filtred reactors which are run parallel to the glucose reactor
prepared as same  concentration with
filtered wastewater. All reactors had been run thorugh 30 days in batch reactor
mode. According to the results; total and soluble COD were measured as 535 mg/L
and 315 mg/L, repectively and ST0/CT0 ratio was
calculated as 59%. Furthermore, at the end of the experimental study, COD
removal ratio for both reactors were calculated as 67 % and 60% for total COD
and 77% and %75 for soluble COD. Inert COD fractions of both wastewaters were
found for Soluble Inert COD (SI0) as 23 mg /L and 9 mg/L, particulate
inert COD (XI0) as 56 mg /L and 60 mg/L and CI0/CT0
ratio was calculated as 15% and 13%.  These
all results shows that, after photocatalyst exposition, at the end of the 30
days, it was not observed any important variation in terms of inert total COD
fraction between two reactors. Furthermore, it is understood that at the end of
the 30 days, while soluble inert fraction reduces 2%, particulate inert
fraction also increases 2%. The reason of this situation can be thought as the adsorbtion
effect of NFC-dopped Titania. 

Kaynakça

  • [1] Wentze, M.C., Mbewe, A., Lakay, M.T., Ekama, G.A. (1999). Batch test for characterisation of the carbonaceous materials in municipal wastewaters, Water SA., 25, 327–336.
  • [2] Henze, M., Van Loosdrecht, M.C., Ekama, G.A., Brdjandnovic, D. (2008). Biological Wastewater Treatment—Principles, Modeling and Design; IWA Publishing: London, UK.
  • [3] Carmen, Z., Daniela, S.(2012).Textile organic dyes—Characteristics, polluting effects and separation/elimination procedures from industrial effluents—A critical overview. In Organic Pollutants Ten Years after the Stockholm Convention—Environmental and Analytical Update; InTech Euro: Rijeka, Croatia, 55–85.
  • [4] Takahashi, N., Kumagai, T. (2006). Removal of dissolved organic carbon and color from dyeing wastewater by pre-ozonation and subsequent biological treatment. Ozone Sci. Eng., 28, 199–205. [CrossRef]
  • [5] Bae,W., Won, H., Hwang, B., Toledo, R.A., Chung, J.W., Kwon, K., Shim, H. (2015) Characterization of refractory matters in dyeing wastewater during a full-scale Fenton process following pure-oxygen activated sludge treatment. J. Hazard. Mater. 287, 421–428. [CrossRef] [PubMed]
  • [6] Lindholm-Lehto, P.C., Knuutinen, J.S., Ahkola, H.S.J., Herve, S.H. (2015) .Refractory organic pollutants and toxicity in pulp and paper mill wastewaters. Environ. Sci. Pollut. Res., 22, 6473–6499. [CrossRef] [PubMed]
  • [7] Carstea, F.M., Bridgeman, J., Baker, A., Reynolds, D.M. (2016). Fluorescence spectroscopy for wastewater monitoring:A review. Water Res., 95, 205–219. [CrossRef] [PubMed]
  • [8] Ata R., Yıldız Töre G. (2019) Characterization and removal of antibiotic residues by NFC-doped photocatalytic oxidation from domestic and industrial secondary treated wastewaters in Meric-Ergene Basin and reuse assessment for irrigation, Journal of Env. Management, 233, 673-680.
  • [9] Ubay Çokgör, E., Orhon, D.,Sözen, S. (1999) Evsel ve Endüstriyel Atıksularda KOI Bileşenleri, SKKD., 9 (2), 31-39.
  • [10] Yıldız G. (2005). Characterization and biological treatability ofacrylic and polyamid fiber based carpet finishing wastewater, phD Thesis, İstanbul Technical University, İstanbul.
  • [11] Orhon, D. and Artan, N. (1994) Modelling of Activated Sludge Systems, Technomic Publishing Co. Inc., USA.
  • [12] Henze, M. (1992). Characterization of Wastewater For Modelling of Activated Sludge Processes, Water Sci. Technol., 25 (6),1-15.
  • [13] Plosz, B.G., Vogelsang, C., Macrae, K., Heiaas, H., Lopez, A., Liltved, H., Langford, K. (2010). The BIOZO process—A biofilm system combined with ozonation: Occurrence of xenobiotic organic micro-pollutants in and removal of polycyclic aromatic hydrocarbons and nitrogen from landfill leachate. Water Sci. Technol., 61, 3188–3197. [CrossRef] [PubMed]
  • [14] Singh S., Singh P.K., Mahalingam H. (2015). An effective and low-cost TiO2/polystyrene floating photocatalyst for environmental remediation International Journal of Environmental Research, 9, 535-544.
  • [15] Asahi R., Morikawa T., Ohwaki T., Aoki K., Taga Y., (2001). Visible-light photocatalysis in nitrogen doped titanium oxides, Science, 293,269-271.
  • [16] El-Sheikh S.M., Zhang G., El-Hosainy H.M., Ismail A.A., O'Shea, P. Falaras K.E., Kontos A.G., DDionysiou.D. (2014). High performance sulfur, nitrogen and carbon doped mesoporous anatase-brookite TiO2 photocatalyst for the removal of microcystin-LR under visible light irradiation, Journal of Hazardous Materials, 280,723-733.
  • [17] Sacco O., Stoller M., Vaiano V., Ciambelli P., Chianese A., Sannino D. (2012). Photocatalytic Degradation of Organic Dyes under Visible Light on N-Doped TiO2 Photocatalysts, International Journal of Photoenergy, Article ID 626759, 8 pages http://dx.doi.org/10.1155/2012/626759, Volume 2012.
  • [18] Devi L.G., Kavitha R. (2013). A review on non metal ion doped titania for the photocatalytic degradation of organic pollutants under UV/solar light: Role of photogenerated charge carrier dynamics in enhancing the activity, Applied Catalysis B: Environmental, 140-141,559-587.
  • [19] APHA (1998). Standard Methods for the Examination of Water and Wastewater, 1998. 20th edn, American Public Health Association/American Water Works Association/Water Environment Federation, Washington DC, USA.
  • [20] Orhon, D., Karahan, Ö., and Sözen, S. (1999). The effect of residual microbial products on the experimental assessment of the particulate inert COD in wastewaters, Wat. Res.,33 (14), 3191-3203.
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makaleleri
Yazarlar

Günay Yıldız Töre 0000-0002-7899-3917

Burak Sarıgül Bu kişi benim 0000-0003-0612-6854

Yayımlanma Tarihi 31 Aralık 2019
Gönderilme Tarihi 18 Ekim 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 2 Sayı: 2