Araştırma Makalesi
BibTex RIS Kaynak Göster

Yapı Malzemesi Olarak Camın Geri Dönüşümü

Yıl 2025, Cilt: 8 Sayı: 1, 55 - 68, 31.07.2025
https://doi.org/10.55581/ejeas.1641367

Öz

Dünya nüfusunun artışı ve teknolojinin gelişmesine bağlı olarak tüketim alışkanlıkları farklılaşmıştır. Bu alışkanlıklar çevre üzerinde tahribatı ve atık miktarını arttırmıştır. Doğal kaynakların sonsuz olmadığı ve bilinçsizce kullanıldıkları takdirde tükenebilecekleri bir gerçektir. Bu durum atıkların tekrar kullanılmasını ve geri dönüşümü önemli kılmaktadır. Çevrenin korunması ve enerji tasarrufu açısından da kaynak israfını önlemek gerekmektedir. İnşaat sektörü dünya üzerindeki atık oluşumundan büyük oranda sorumludur. Bir yapının üretimi; hammaddenin doğadan elde edilmesinden başlayarak yapılarda kullanılması ve kullanım ömrünü tamamlaması ile tekrar doğaya geri dönmesini kapsayan uzun bir süreçtir. Yapı malzemeleri üretiminde kaynak kullanımı ve sera gazı emisyonu değişebilmektedir. Bu noktada karbon ayak izinin azaltılması için geri dönüşümün rolü büyüktür. Cam, doğal hammaddesi ve uzun yaşam ömrüyle geri dönüştürülebilen bir malzemedir; ancak kullanım oranlarının fazlalığı nedeniyle geri dönüşüm süreci dikkat ve özen gerektirmektedir. Cam yapı malzemesi bina kabuğunda yatay, düşey ve eğik yüzeylerde ışık geçirgenliği özelliğiyle saydam yapı elemanlarının vazgeçilmez öğesidir. Yapı camları, gün ışığını iç mekâna alarak aydınlatma ihtiyacını karşılayan temel elemanlar olmanın yanı sıra, teknolojik gelişmelerle birlikte kullanım alanları genişlemiş; yapılara manzara sunma ve estetik açıdan şekil verme işlevleri de kazanmıştır. Günümüzde çok katlı binaların ve bu binaların cephelerinde kullanılan saydamlık oranlarının artması; cam malzemelerin üretim ve geri dönüşüm evreleriyle, doğa üzerinde oluşturduğu etkinin de incelenmesini gerekli kılmaktadır. Türkiye; inşaat sektöründe kullanılan yapı camı üretiminin büyük bir oranını kendi bünyesinde karşılayabilmektedir. Bu çalışmada, cam yapı malzemesinin genel özellikleri, geri dönüşüm yöntemleri ve bu süreçlerden elde edilen kazanımlar incelenmektedir. Camın hammadde ve kaynak kullanımı açısından sürdürülebilir yapı malzemesi özellikleri vurgulanmaktadır.

Kaynakça

  • European Commission. (2018). Construction and demolition waste (CDW). Retrieved April 19, 2025. from, https://ec.europa.eu/environment/waste/construction_demolition.htm
  • Blengini G.A., Busto M., Fontoni M. & Fino D., (2012). Eco-efficient waste glass recycling: Integrated waste management and green product development through LCA, Waste Management, 32(5): 1000-1008, DOI: https://doi.org/10.1016/j.wasman.2011.10.018.
  • Calkins, M., (2008). Materials for sustainable sites: a complete guide to the evaluation, selection, and use of sustainable construction materials. Chapter 1: Materials for Sustainable Sites Defined, John Wiley & Sons. Retrieved from, https://media.wiley.com/product_data/excerpt/50/04701345/0470134550.pdf
  • Saghafi M.D. & Teshnizi Z.S.H., (2011). Recycling value of building materials in building assessment systems, Energy and Buildings, Volume 43(11): 3181-3188, DOI: https://doi.org/10.1016/j.enbuild.2011.08.016
  • Hammond, A., & World Resources Institute. (1995). Environmental indicators: a systematic approach to measuring and reporting on environmental policy performance in the context of sustainable development (Vol. 36). Washington, DC: World Resources Institute. Retrieved from, http://pdf.wri.org/environmentalindicators_bw.pdf
  • Aydın İpekçı̇ C., Coşkun N. & Tıkansak Karadayı T., (2017). İnşaat sektöründe gerı̇ kazanılmış malzeme kullanımının sürdürülebı̇lı̇rlı̇k açısından önemı̇, Türk Bilim Araştırma Vakfı Dergisi, 10 (2) 43-50. Erişim adresi, https://dergipark.org.tr/tr/download/article-file/309730
  • Saltan M., Kaçaroğlu G., Karadağ Ö. & Coşkun, S., İnşaat sektörü atık yönetimi, çevresel açıdan sektörel atık yönetimi ve uygulamaları ıı, Editörler: Prof. Dr. İsmail Tosun, Prof. Dr. Kâmil Ekinci. S:145-166. Nobel Bilimsel Eserler, Ankara, Yayın no: 1759. ISBN: 978-625-398-826-5. 2023. Erişim adresi, https://www.researchgate.net/publication/376046934
  • Akbaş A. & Çalışkan Ö., (2023). İnşaat sektöründe sürdürülebilirlik ve atık yönetimi, 2 nd International Conference on Recent Academic Studies October 19-20, 2023; Konya, Türkiye. Erişim adresi, https://www.researchgate.net/publication/375000913
  • United States Environmental Protection Agency (EPA). (2021). national overview: facts and figures on materials, wastes and recycling. Retrieved, April 19, 2025 from, https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/national-overview-facts-and-figures-materials?utm_source=chatgpt.com
  • Eurostat. (2023). Waste statistics- statistics explained. european commission. Retrieved from, https://ec.europa.eu/eurostat/statistics explained/index.php/Waste_statistics
  • Zhao, L., & Liu, X. (2021). Life cycle assessment of recycled glass in construction: Energy and environmental impacts. Construction and Building Materials, 286: 122-129. DOI: https://doi.org/10.1016/j.conbuildmat.2021.122732
  • Çokaygil Z., Atık yönetimi planlamasında yasam döngüsü analizi, (2005), Anadolu Üniversitesi, Fen Bilimleri Enstitüsü, Çevre Mühendisliği Anabilim Dalı, Yüksek Lisans Tezi.
  • Ashby M.F., (2012). Materials and the environment: eco-informed material choice, Second edition, Chapter 3: The Material Life Cycle, Elsevier,
  • Brown M.A. & Hwang H., (1986). Energy and buildings: special issue on measuring energy savings: the scorekeeping approach. Margaret F. (Ed.), February/May 1986, Volume 9, Nos. 1 & 2. Resources, Conservation and Recycling 1989:2(3):235–239. DOI: https://doi.org/10.1016/J.RESCONREC.2012.12.015
  • Berge, B., (2001). Ecology of Building Materials (1st ed.). Routledge. DOI: https://doi.org/10.4324/9780080504988
  • Maccarini Vefago L.H. & Avellaneda J., (2013). Recycling concepts and the index of recyclability for building materials, Resources, Conservation and Recycling, Volume 72: 127-135, DOI: https://doi.org/10.1016/j.resconrec.2012.12.015
  • Ruban C., (2021). Yaşam döngüsü ile düşünme rehberi-1, yaşam döngüsü analizi, Erişim tarihi, 20 Nisan 2025. Adresi, https://www.medium.com/türkiye/yaşam-döngüsü-ile-düşünme-rehberi-2-a43e93adda4d
  • Mohanty, C. R. C., (2011). Reduce, reuse and recycle (the 3Rs) and resource efficiency as the basis for sustainable waste management. Proceedings of the synergizing resource efficiency with informal sector towards sustainable waste management, New York, NY, USA, 9. Retrieved April 19, 2025. from, https://uncrd.un.org/sites/uncrd.un.org//files/20110509_02_mohanty_csd19-learning-centre.pdf
  • Bristogianni T. & Oikonomopoulou F., (2022). Glass up-casting: a review on the current challenges in glass recycling and a novel approach for recycling “as-is” glass waste into volumetric glass components. Glass Structures & Engineering. 8. DOI: https://doi.org/10.1007/s40940-022-00206-9
  • Pereira da Costa F., Rodrigues da Silva Morais C. & Rodrigues A.M., 2020, Sustainable glass-ceramic foams manufactured from waste glass bottles and bentonite, Ceram. Int., 46 (11): 17957-17961, DOI: https://doi.org/10.1016/j.ceramint.2020.04.107
  • Environmental Protection Agency. (t.y.). Resource Conservation and Recovery Act (RCRA) overview. Retrieved from, https://www.epa.gov/rcra/resource-conservation-and-recovery-act-rcra-overview
  • Federal Authorities of the Swiss Confederation. (2015). Ordinance on the Avoidance and the Disposal of Waste. Retrieved from, https://www.fedlex.admin.ch/eli/cc/2015/891/en
  • National Renewable Energy Laboratory. (1994). Closed loop economy and waste management act. Retrieved from, https://www.nrel.gov/docs/legosti/old/7978.pdf
  • Çevre ve Şehircilik Bakanlığı, (2015). Atık yönetimi yönetmeliği. Resmî Gazete, 2 Nisan 2015, Sayı: 29314. Erişim tarihi, 19 Nisan 2025. Adresi, https://webdosya.csb.gov.tr/db/lab/duyurular/atiktan-numune-alma-mevzuati-20211215093213.pdf
  • U.S. Environmental Protection Agency (EPA). (2025). Resource Conservation and Recovery Act (RCRA). Retrieved from,https://www.epa.gov/history/epa-history-resource-conservation-and-recovery-actUS EPA
  • California Building Standards Commission. (2011). California Green Building Standards Code (CALGreen).Retrieved April 19, 2025. from, https://www.dgs.ca.gov/BSC/About/History-of-the-California-Green-Building-Standards-Code-CALGreen
  • Federal Office for the Environment (FOEN). (1991). Technische Verordnung über Abfälle (TVA). Retrieved April 19, 2025. from, https://www.newsd.admin.ch/newsd/message/attachments/13767.pdf
  • Ma, M., Tam, V. W. Y., Le, K. N., Butera, A., Li, W., & Wang, X. (2023). Comparative analysis on international construction and demolition waste management policies and laws for policy makers in China. Journal of Civil Engineering and Management, 29(2), 107-130. DOI: https://doi.org/10.3846/jcem.2023.16581
  • Iacoboaea, C., Aldea, M., & Petrescu, F. (2019). Construction and demolition waste- a challenge for the European Union. Theoretical and Empirical Researches in Urban Management, 14(1), 30–52. Retrieved from, https://www.researchgate.net/publication/331328615
  • Aleksey Anisimo & Dmitriy Motorin, (2023). A new legal conceptfor understanding the essence of production and consumption waste:AViewfrom Russia, Revista Direito GV, São Paulo, v. 19, e2330. DOI: https://doi.org/ 10.1590/2317-6172202330
  • Akhtar, A., & Sarmah, A. K. (2018). Construction and demoli- tion waste generation and properties of recycled aggregate concrete: A global perspective. Journal of Cleaner Production, 186, 262–281. DOI: https://doi.org/10.1016/j.jclepro.2018.03.085
  • Lu, W., & Yuan, H. (2010). Exploring critical success factors for waste management in construction projects of China. Re-sources, Conservation & Recycling, 55(2), 201–208. DOI: https://doi.org/10.1016/j.resconrec.2010.09.010
  • Mısır, A. ve Arıkan, O.A., (2022), Avrupa ve Türkiye’de sıfır atık yönetimi ve döngüsel ekonomi, Çevre, İklim ve Sürdürülebilirlik, 1(1), 69–78. Erişim adresi, https://dergipark.org.tr/tr/download/article-file/2300683.
  • Yaş, H., (2018). Türkiye’de çevresel etki değerlendirmesi ve stratejik çevresel değerlendirme uygulamasının genel bir değerlendirmesi, Kent Akademisi, 11(1), 29-43. Erişim adresi, https://dergipark.org.tr/en/download/article-file/449634
  • Haypak, (t.y.). Geri dönüşümde en iyi ülkeler, Haypak Blogu. Erişim tarihi, Aralık 2024. Adresi, https://www.haypak.com.tr/blogs/haypak/geri-donusumde-en-iyi-ulkeler
  • Çevre ve Şehircilik Bakanlığı, (2022). Döngüsel ekonomi: genel değerlendirme raporu, Europe Aid/140562/IH/SER/TR. Erişim tarihi, 19 Nisan 2025
  • Öner G., (2022). Doğal atıkların kompozit malzeme olarak kullanım olanakları, Mühendislikte Güncel Araştırmalar Kitabı, Gece Kitaplığı, Sertifika No: 47083, s. 132-144.
  • Aran A., (2008). Malzeme bilgisi 2007-2008 bahar ders notları, İTÜ Makine Mühendisliği Bölümü, Erişim tarihi, 20 Nisan 2025. Adresi, https://www2.isikun.edu.tr/personel/ahmet.aran/mal201.pdf
  • Filser F. ve Gauckler L.J., (2007). Ceramic Materials, Chapter 5: Glass, Material Science II, ETH-Zürich, Malzemeler Bölümü, s.1-80.
  • Kaner F., (t.y.), Cam fırını ve refrakterleri, İstanbul Üniversitesi, Mühendislik Fakültesi, Erişim tarihi, 22 Nisan 2025. Adresi, https://slideplayer.biz.tr/slide/3122602/
  • Thormark C., (2006). The effect of material choice on the total energy need and recycling potential of a building, Building and Environment, 41(8): 1019-1026, DOI: https://doi.org/10.1016/j.buildenv.2005.04.026
  • Siddique R., (2011). Utilization of silica fume in concrete: review of hardened properties, Resour. Conserv. Recycl., 55 (11): 923-932, DOI: 10.1016/j.resconrec.2011.06.012
  • Toutanji H., Delatte N., Aggoun S., (2004). Effect of supplementary cementitious materials on the compressive strength and durability of short-term cured concrete, Cement Concr. Res., 34 (2): 311-319, DOI: 10.1016/j.cemconres.2003.08.017
  • Jiang M., Chen X. & Rajabipour F., (2014). Comparative life cycle assessment of conventional, glass powder, and alkali-activated slag concrete and mortar, J. Infrastruct. Syst., 20 (4), DOI: 10.1061/(asce)is.1943-555x.0000211
  • Mohajerani A., Vajna J., Cheung T.H.H., Kurmus H., Arulrajah A. & Horpibulsuk S., (2017). Practical recycling applications of crushed waste glass in construction materials: a review, Construction and Building Materials (Vol. 156, Pp. 443–467), Elsevier Ltd, Erişim adresi, 10.1016/j.conbuildmat.2017.09.005
  • Gök S.G. & Şengül Ö., (2024). Enhancing mechanical properties of alkali-activated slag SIFCON for sustainable construction using recycled glass and tire-derived waste steel fibers, International Journal of Concrete Structures and Materials, Volume 18, article number 89, DOI: https://doi.org/10.1186/s40069-024-00724-6
  • Gök S.G. & Sengul Ö., (2021). The use of waste glass as an activator in alkali-activated slag mortars, Proceedings of the Institution of Civil Engineers – Engineering Sustainability 174(3): 120–130. DOI: https://doi.org/10.1680/jensu.19.00070
  • Manan A., Zhang P., Alattyih W., Alzara M., Ahmad J. & Yosri A.M., (2024). Physical properties of recycled concrete powder and waste tyre fibre reinforced concrete, Proceedings of the Institution of Civil Engineers- Engineering Sustainability 178:3, 171-184. Retrieved from, https://www.icevirtuallibrary.com/doi/full/10.1680/jensu.24.00079
  • Kavas T., Çelik M.Y. & Evcin A., (2004). Cam atıklarının çimento üretiminde katkı maddesi olarak kullanılabilirliğinin araştırılması, 5 Endüstriyel Hammaddeler Sempozyumu, s.114-119. 13-14 Mayıs 2004, Izmir, Türkiye.
  • Cihan M.T. & Akyüncü V., (2025). Statistical analysis of mechanical properties of waste glass powder substituted glass fiber mortars by ANOVA, ÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci., 14 (2), 580-587. DOI: https://doi.org/10.28948/ngumuh.1558323
  • Schwarz N., Cam H. & Neithalath N., (2008). Influence of a fine glass powder on the durability characteristics of concrete and its comparison to fly ash, Cement & Concrete Composites 30, 486–496 DOI: https://doi.org/10.1016/j.cemconcomp.2008.02.001
  • Adhikary S.K., Ashish D.K. & Rudžionis Z., (2021). Expanded glass as light-weight aggregate in concrete – A review, Journal of Cleaner Production Volume 313, 127848. DOI: https://doi.org/10.1016/j.jclepro.2021.127848
  • Owoeye S.S., Matthew G.O., Ovienmhanda F.O. & Tunmilayo S.O., (2020). Preparation and characterization of foam glass from waste container glasses and water glass for application in thermal insulations, Ceramics International, 46 (8), Part B, p. 11770-11775, DOI: https://doi.org/10.1016/j.ceramint.2020.01.211.
  • Mohajerani A., Vajna J., Cheung T.H.H., Kurmus H., Arulrajah A. & Horpibulsuk S., (2017). Practical recycling applications of crushed waste glass in construction materials: A review, Construction and Building Materials, 156, s. 443-467, DOI: https://doi.org/10.1016/j.conbuildmat.2017.09.005.
  • Bahadori A., (2014)., Thermal insulation handbook for the oil, gas, and petrochemical industries, chapter three- material selection for thermal ınsulation, p.239-301. Gulf Professional Publishin. DOI: https://doi.org/10.1016/B978-0-12-800010-6.00003-4
  • Özer, N., & Acun Özgünler, S. (2019). Yapılarda yaygın kullanılan ısı yalıtım malzemelerinin performans özelliklerinin duvar kesitleri üzerinde değerlendirilmesi. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 24(2), 25-48. Erişim adresi, https://dergipark.org.tr/tr/download/article-file/777815
  • Guo P., Meng W., Du J., Stevenson L., Han B. & Bao Y., (2023). Lightweight ultra-high-performance concrete (UHPC) with expanded glass aggregate: Development, characterization, and life-cycle assessment, Construction and Building Materials, Volume 371. DOI: https://doi.org/10.1016/j.conbuildmat.2023.130441
  • Kurpi M., Grzyl B., Pszczola M. & Kristowski A., (2019). The Application of granulated expanded glass aggregate with cement grout as an alternative solution for sub-grade and frost-protection sub-base layer in road construction, Materials, 12(21), 3528. DOI: https://doi.org/10.3390/ma12213528.
  • Altuncı, Y. T., Öcal, C., Saplıoğlu, K., İnce, H. H., vd. (2021). Genleştirilmiş cam agrega ve genleştirilmiş perlit agrega ikameli şap betonlarının bazı fiziksel özelliklerinin araştırılması. Teknik Bilimler Dergisi, 11(2), 8-13. DOI: https://doi.org/10.35354/tbed.918849.
  • Altuncı Y. T., Öcal C., Saplıoğlu K., İnce H.H. & Cevikbas M., (2021). Genleştirilmiş cam agregalı ve genleştirilmiş perlit agregalı şap harçlarının performans özelliklerinin belirlenmesi, El-Cezeri Journal of Science and Engineering, vol. 8, no. 1, pp. 11–20, DOI: https://doi.org/10.31202/ecjse.753475.
  • Aktürk, B., Dayi, M., & Aruntaş, H. Y. (2021). Genleştirilmiş cam küre agrega katkılı harçların bazı özelliklerinin incelenmesi. Duzce University Journal of Science and Technology, 9(1), 443-452. DOI: https://doi.org/10.29130/dubited.729582
  • Tazeoğlu F., 21. yy.’da seramik ve cam malzemelerin mimaride yüzey oluşturma ve kaplamada kullanımı, (2016), Yüksek Lisans Tezi, Anadolu Üniversitesi Güzel Sanatlar Enstitüsü, Seramik Anasanat Dalı, Eskişehir.
  • Kántor, P., Béri, J., Képes, B. & Székely, E., (2024). Glass wool recycling by water-based solvolysis. ChemEngineering, 8, 93. DOI: https://doi.org/10.3390/chemengineering8050093
  • Topçu, İ. B., & Kural, R. (2023). Saydam betonun özellikleri üzerine bir çalişma, Kahramanmaraş Sütçü İmam Üniversitesi, Mühendislik Bilimleri Dergisi, 26(3), 784-794. DOI: https://doi.org/10.17780/ksujes.1207991.
  • Çetinkale Demirkan G., (2023), Atık cam malzemenin peyzaj tasarımlarında kullanılabilirliği, Online Journal of Art and Design, 11(5) 382-389. DOI: https://adjournal.net/articles/115/11524.pdf
  • Real Baek C., Kim H.D. & Jang Y.C., (2025). Exploring glass recycling: Trends, technologies, and future trajectories, Environmental Engineering Research, 30(3) 240241. DOI: https://doi.org/10.4491/eer.2024.241
  • Harrison E., Berenjian A. & Seifan M., (2020). Recycling of waste glass as aggregate in cement-based materials, Environmental Science and Ecotechnology, 4, 100064, DOI: https://doi.org/10.1016/j.ese.2020.100064.
  • Makowski, C., Finkl, C. W., & Rusenko, K. (2011). Using recycled glass cullet for coastal protection: a review of geotechnical, biological, & Abiotic Analyses. Journal of Coastal Research, 1362–1366. Retrieved from, http://www.jstor.org/stable/26482398
  • Tao Y., Hadigheh S.A. & Wei Y., (2023). Recycling of glass fibre reinforced polymer (GFRP) composite wastes in concrete: A critical review and cost benefit analysis, Structures, 53, p.1540-1556, DOI: https://doi.org/10.1016/j.istruc.2023.05.018.
  • Scaffaro R., Di Bartolo A. & Dintcheva N.T., (2021). Matrix and filler recycling of carbon and glass fiber reinforced polymer composites: a review, Polymers, 13, 3817. DOI: https://doi.org/10.3390/ polym13213817.
  • Şenol A.F., (2023). Endüstriyel atık tozları ile üretilen geopolimer harç ve betonların özellikleri, 2nd International Conference on Innovative Academic Studies, Konya, Turkey. Erişim adresi, https://www.researchgate.net/publication/368336323
  • Gök S.G. & Şengül Ö., (2023). Geopolimer üretiminde atık cam kullanımı, Beton 2023 Kongresi Bildirileri, 8,10 Kasım 2023, s: 588-597. Erişim tarihi, 20 Nisan 2025. Adresi, https://www.thbbakademi.org/wp-content/uploads/2023/10/Geopolimer-Uretiminde-Atik-Cam-Kullanimi.pdf
  • Yuan X., Wang J., Song Q. & Xu Z., (2024). Integrated assessment of economic benefits and environmental impact in waste glass closed-loop recycling for promoting glass circularity, Journal of Cleaner Production, 444: 141155, DOI: https://doi.org/10.1016/j.jclepro.2024.141155
  • Glass Pavilion at the Toledo Museum of Art / SANAA, Erişim tarihi, Aralık 2024. Adresi, https://www.archdaily.com/54199/glass-pavilion-at-the-toledo-museum-of-art-sanaa-pritzker-prize-2010
  • The Crystal, Erişim tarihi, Aralık 2024. Adresi, https://www.archdaily.com/275111/the-crystal-wilkinson-eyre-architects?ad_source=search&ad_medium=projects_tab
  • The Edge, Erişim tarihi, Aralık 2024. Adresi, https://www.archdaily.com/785967/the-edge-plp-architecture
  • Garanti BBVA Teknoloji Kampüsü, Erişim tarihi, Aralık 2024. Adresi, https://www.arkitektuel.com/garanti-bbva-teknoloji-kampusu/
  • Wat Pa Maha Chedi Kaew, Erişim tarihi, Aralık 2024. Adresi, https://itsbetterinthailand.com/activities/wat-pa-maha-chedi-kaew-wat-lan-khuad-a-temple-made-out-of-glass-bottles-sisaket
  • Şişecam, (2023), Sürdürülebilirlik raporu, Erişim tarihi, Aralık 2024. Adresi, https://www.sisecam.com.tr/sites/catalogs/tr/Documents/sustainability/sisecamsurdurulebilirlik2023.pdf
  • Ahmad, F., Khan, F., & Khan, A., (2021). Potential use of recycled materials on rooftops to improve thermal comfort in sustainable building construction projects. Frontiers in Built Environment, 7(1): 101-112. DOI: https://doi.org/10.3389/fbuil.2022.1014473
  • Müller, J., & Rieger, T. (2018). Recycled materials in the construction sector: Environmental and economic benefits. Sustainable Materials and Technologies, 16: 1-7. DOI: https://doi.org/10.1016/j.susmat.2018.07.001

Recycling of Glass as a Building Material

Yıl 2025, Cilt: 8 Sayı: 1, 55 - 68, 31.07.2025
https://doi.org/10.55581/ejeas.1641367

Öz

Global population growth and technological advancements have altered consumption habits, increasing environmental degradation and waste. Natural resources are finite and can be depleted if misused, making recycling and reuse essential. Preventing resource waste is also crucial for environmental protection and energy conservation. The construction industry significantly contributes to global waste generation. A building’s lifecycle—from raw material extraction to use and eventual disposal—is a long and resource-intensive process. Greenhouse gas emissions and resource consumption vary across building material production, where recycling plays a key role in reducing the carbon footprint. Glass, with its natural raw materials and long lifespan, is a recyclable material. However, due to its widespread use, recycling requires careful management. As a building material, glass is essential for transparent architectural elements due to its light transmittance on horizontal, vertical, and inclined surfaces. Beyond enabling daylight access and reducing artificial lighting needs, advances in technology have expanded its role, enhanced aesthetics and providing views. The increasing use of glass in high-rise façades necessitates examining its production and recycling impacts. Turkey largely meets its architectural glass demand through domestic production. This study explores the general properties of glass as a building material, recycling methods, and associated benefits. It also emphasizes the sustainability of glass in terms of raw material and resource efficiency.

Kaynakça

  • European Commission. (2018). Construction and demolition waste (CDW). Retrieved April 19, 2025. from, https://ec.europa.eu/environment/waste/construction_demolition.htm
  • Blengini G.A., Busto M., Fontoni M. & Fino D., (2012). Eco-efficient waste glass recycling: Integrated waste management and green product development through LCA, Waste Management, 32(5): 1000-1008, DOI: https://doi.org/10.1016/j.wasman.2011.10.018.
  • Calkins, M., (2008). Materials for sustainable sites: a complete guide to the evaluation, selection, and use of sustainable construction materials. Chapter 1: Materials for Sustainable Sites Defined, John Wiley & Sons. Retrieved from, https://media.wiley.com/product_data/excerpt/50/04701345/0470134550.pdf
  • Saghafi M.D. & Teshnizi Z.S.H., (2011). Recycling value of building materials in building assessment systems, Energy and Buildings, Volume 43(11): 3181-3188, DOI: https://doi.org/10.1016/j.enbuild.2011.08.016
  • Hammond, A., & World Resources Institute. (1995). Environmental indicators: a systematic approach to measuring and reporting on environmental policy performance in the context of sustainable development (Vol. 36). Washington, DC: World Resources Institute. Retrieved from, http://pdf.wri.org/environmentalindicators_bw.pdf
  • Aydın İpekçı̇ C., Coşkun N. & Tıkansak Karadayı T., (2017). İnşaat sektöründe gerı̇ kazanılmış malzeme kullanımının sürdürülebı̇lı̇rlı̇k açısından önemı̇, Türk Bilim Araştırma Vakfı Dergisi, 10 (2) 43-50. Erişim adresi, https://dergipark.org.tr/tr/download/article-file/309730
  • Saltan M., Kaçaroğlu G., Karadağ Ö. & Coşkun, S., İnşaat sektörü atık yönetimi, çevresel açıdan sektörel atık yönetimi ve uygulamaları ıı, Editörler: Prof. Dr. İsmail Tosun, Prof. Dr. Kâmil Ekinci. S:145-166. Nobel Bilimsel Eserler, Ankara, Yayın no: 1759. ISBN: 978-625-398-826-5. 2023. Erişim adresi, https://www.researchgate.net/publication/376046934
  • Akbaş A. & Çalışkan Ö., (2023). İnşaat sektöründe sürdürülebilirlik ve atık yönetimi, 2 nd International Conference on Recent Academic Studies October 19-20, 2023; Konya, Türkiye. Erişim adresi, https://www.researchgate.net/publication/375000913
  • United States Environmental Protection Agency (EPA). (2021). national overview: facts and figures on materials, wastes and recycling. Retrieved, April 19, 2025 from, https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/national-overview-facts-and-figures-materials?utm_source=chatgpt.com
  • Eurostat. (2023). Waste statistics- statistics explained. european commission. Retrieved from, https://ec.europa.eu/eurostat/statistics explained/index.php/Waste_statistics
  • Zhao, L., & Liu, X. (2021). Life cycle assessment of recycled glass in construction: Energy and environmental impacts. Construction and Building Materials, 286: 122-129. DOI: https://doi.org/10.1016/j.conbuildmat.2021.122732
  • Çokaygil Z., Atık yönetimi planlamasında yasam döngüsü analizi, (2005), Anadolu Üniversitesi, Fen Bilimleri Enstitüsü, Çevre Mühendisliği Anabilim Dalı, Yüksek Lisans Tezi.
  • Ashby M.F., (2012). Materials and the environment: eco-informed material choice, Second edition, Chapter 3: The Material Life Cycle, Elsevier,
  • Brown M.A. & Hwang H., (1986). Energy and buildings: special issue on measuring energy savings: the scorekeeping approach. Margaret F. (Ed.), February/May 1986, Volume 9, Nos. 1 & 2. Resources, Conservation and Recycling 1989:2(3):235–239. DOI: https://doi.org/10.1016/J.RESCONREC.2012.12.015
  • Berge, B., (2001). Ecology of Building Materials (1st ed.). Routledge. DOI: https://doi.org/10.4324/9780080504988
  • Maccarini Vefago L.H. & Avellaneda J., (2013). Recycling concepts and the index of recyclability for building materials, Resources, Conservation and Recycling, Volume 72: 127-135, DOI: https://doi.org/10.1016/j.resconrec.2012.12.015
  • Ruban C., (2021). Yaşam döngüsü ile düşünme rehberi-1, yaşam döngüsü analizi, Erişim tarihi, 20 Nisan 2025. Adresi, https://www.medium.com/türkiye/yaşam-döngüsü-ile-düşünme-rehberi-2-a43e93adda4d
  • Mohanty, C. R. C., (2011). Reduce, reuse and recycle (the 3Rs) and resource efficiency as the basis for sustainable waste management. Proceedings of the synergizing resource efficiency with informal sector towards sustainable waste management, New York, NY, USA, 9. Retrieved April 19, 2025. from, https://uncrd.un.org/sites/uncrd.un.org//files/20110509_02_mohanty_csd19-learning-centre.pdf
  • Bristogianni T. & Oikonomopoulou F., (2022). Glass up-casting: a review on the current challenges in glass recycling and a novel approach for recycling “as-is” glass waste into volumetric glass components. Glass Structures & Engineering. 8. DOI: https://doi.org/10.1007/s40940-022-00206-9
  • Pereira da Costa F., Rodrigues da Silva Morais C. & Rodrigues A.M., 2020, Sustainable glass-ceramic foams manufactured from waste glass bottles and bentonite, Ceram. Int., 46 (11): 17957-17961, DOI: https://doi.org/10.1016/j.ceramint.2020.04.107
  • Environmental Protection Agency. (t.y.). Resource Conservation and Recovery Act (RCRA) overview. Retrieved from, https://www.epa.gov/rcra/resource-conservation-and-recovery-act-rcra-overview
  • Federal Authorities of the Swiss Confederation. (2015). Ordinance on the Avoidance and the Disposal of Waste. Retrieved from, https://www.fedlex.admin.ch/eli/cc/2015/891/en
  • National Renewable Energy Laboratory. (1994). Closed loop economy and waste management act. Retrieved from, https://www.nrel.gov/docs/legosti/old/7978.pdf
  • Çevre ve Şehircilik Bakanlığı, (2015). Atık yönetimi yönetmeliği. Resmî Gazete, 2 Nisan 2015, Sayı: 29314. Erişim tarihi, 19 Nisan 2025. Adresi, https://webdosya.csb.gov.tr/db/lab/duyurular/atiktan-numune-alma-mevzuati-20211215093213.pdf
  • U.S. Environmental Protection Agency (EPA). (2025). Resource Conservation and Recovery Act (RCRA). Retrieved from,https://www.epa.gov/history/epa-history-resource-conservation-and-recovery-actUS EPA
  • California Building Standards Commission. (2011). California Green Building Standards Code (CALGreen).Retrieved April 19, 2025. from, https://www.dgs.ca.gov/BSC/About/History-of-the-California-Green-Building-Standards-Code-CALGreen
  • Federal Office for the Environment (FOEN). (1991). Technische Verordnung über Abfälle (TVA). Retrieved April 19, 2025. from, https://www.newsd.admin.ch/newsd/message/attachments/13767.pdf
  • Ma, M., Tam, V. W. Y., Le, K. N., Butera, A., Li, W., & Wang, X. (2023). Comparative analysis on international construction and demolition waste management policies and laws for policy makers in China. Journal of Civil Engineering and Management, 29(2), 107-130. DOI: https://doi.org/10.3846/jcem.2023.16581
  • Iacoboaea, C., Aldea, M., & Petrescu, F. (2019). Construction and demolition waste- a challenge for the European Union. Theoretical and Empirical Researches in Urban Management, 14(1), 30–52. Retrieved from, https://www.researchgate.net/publication/331328615
  • Aleksey Anisimo & Dmitriy Motorin, (2023). A new legal conceptfor understanding the essence of production and consumption waste:AViewfrom Russia, Revista Direito GV, São Paulo, v. 19, e2330. DOI: https://doi.org/ 10.1590/2317-6172202330
  • Akhtar, A., & Sarmah, A. K. (2018). Construction and demoli- tion waste generation and properties of recycled aggregate concrete: A global perspective. Journal of Cleaner Production, 186, 262–281. DOI: https://doi.org/10.1016/j.jclepro.2018.03.085
  • Lu, W., & Yuan, H. (2010). Exploring critical success factors for waste management in construction projects of China. Re-sources, Conservation & Recycling, 55(2), 201–208. DOI: https://doi.org/10.1016/j.resconrec.2010.09.010
  • Mısır, A. ve Arıkan, O.A., (2022), Avrupa ve Türkiye’de sıfır atık yönetimi ve döngüsel ekonomi, Çevre, İklim ve Sürdürülebilirlik, 1(1), 69–78. Erişim adresi, https://dergipark.org.tr/tr/download/article-file/2300683.
  • Yaş, H., (2018). Türkiye’de çevresel etki değerlendirmesi ve stratejik çevresel değerlendirme uygulamasının genel bir değerlendirmesi, Kent Akademisi, 11(1), 29-43. Erişim adresi, https://dergipark.org.tr/en/download/article-file/449634
  • Haypak, (t.y.). Geri dönüşümde en iyi ülkeler, Haypak Blogu. Erişim tarihi, Aralık 2024. Adresi, https://www.haypak.com.tr/blogs/haypak/geri-donusumde-en-iyi-ulkeler
  • Çevre ve Şehircilik Bakanlığı, (2022). Döngüsel ekonomi: genel değerlendirme raporu, Europe Aid/140562/IH/SER/TR. Erişim tarihi, 19 Nisan 2025
  • Öner G., (2022). Doğal atıkların kompozit malzeme olarak kullanım olanakları, Mühendislikte Güncel Araştırmalar Kitabı, Gece Kitaplığı, Sertifika No: 47083, s. 132-144.
  • Aran A., (2008). Malzeme bilgisi 2007-2008 bahar ders notları, İTÜ Makine Mühendisliği Bölümü, Erişim tarihi, 20 Nisan 2025. Adresi, https://www2.isikun.edu.tr/personel/ahmet.aran/mal201.pdf
  • Filser F. ve Gauckler L.J., (2007). Ceramic Materials, Chapter 5: Glass, Material Science II, ETH-Zürich, Malzemeler Bölümü, s.1-80.
  • Kaner F., (t.y.), Cam fırını ve refrakterleri, İstanbul Üniversitesi, Mühendislik Fakültesi, Erişim tarihi, 22 Nisan 2025. Adresi, https://slideplayer.biz.tr/slide/3122602/
  • Thormark C., (2006). The effect of material choice on the total energy need and recycling potential of a building, Building and Environment, 41(8): 1019-1026, DOI: https://doi.org/10.1016/j.buildenv.2005.04.026
  • Siddique R., (2011). Utilization of silica fume in concrete: review of hardened properties, Resour. Conserv. Recycl., 55 (11): 923-932, DOI: 10.1016/j.resconrec.2011.06.012
  • Toutanji H., Delatte N., Aggoun S., (2004). Effect of supplementary cementitious materials on the compressive strength and durability of short-term cured concrete, Cement Concr. Res., 34 (2): 311-319, DOI: 10.1016/j.cemconres.2003.08.017
  • Jiang M., Chen X. & Rajabipour F., (2014). Comparative life cycle assessment of conventional, glass powder, and alkali-activated slag concrete and mortar, J. Infrastruct. Syst., 20 (4), DOI: 10.1061/(asce)is.1943-555x.0000211
  • Mohajerani A., Vajna J., Cheung T.H.H., Kurmus H., Arulrajah A. & Horpibulsuk S., (2017). Practical recycling applications of crushed waste glass in construction materials: a review, Construction and Building Materials (Vol. 156, Pp. 443–467), Elsevier Ltd, Erişim adresi, 10.1016/j.conbuildmat.2017.09.005
  • Gök S.G. & Şengül Ö., (2024). Enhancing mechanical properties of alkali-activated slag SIFCON for sustainable construction using recycled glass and tire-derived waste steel fibers, International Journal of Concrete Structures and Materials, Volume 18, article number 89, DOI: https://doi.org/10.1186/s40069-024-00724-6
  • Gök S.G. & Sengul Ö., (2021). The use of waste glass as an activator in alkali-activated slag mortars, Proceedings of the Institution of Civil Engineers – Engineering Sustainability 174(3): 120–130. DOI: https://doi.org/10.1680/jensu.19.00070
  • Manan A., Zhang P., Alattyih W., Alzara M., Ahmad J. & Yosri A.M., (2024). Physical properties of recycled concrete powder and waste tyre fibre reinforced concrete, Proceedings of the Institution of Civil Engineers- Engineering Sustainability 178:3, 171-184. Retrieved from, https://www.icevirtuallibrary.com/doi/full/10.1680/jensu.24.00079
  • Kavas T., Çelik M.Y. & Evcin A., (2004). Cam atıklarının çimento üretiminde katkı maddesi olarak kullanılabilirliğinin araştırılması, 5 Endüstriyel Hammaddeler Sempozyumu, s.114-119. 13-14 Mayıs 2004, Izmir, Türkiye.
  • Cihan M.T. & Akyüncü V., (2025). Statistical analysis of mechanical properties of waste glass powder substituted glass fiber mortars by ANOVA, ÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci., 14 (2), 580-587. DOI: https://doi.org/10.28948/ngumuh.1558323
  • Schwarz N., Cam H. & Neithalath N., (2008). Influence of a fine glass powder on the durability characteristics of concrete and its comparison to fly ash, Cement & Concrete Composites 30, 486–496 DOI: https://doi.org/10.1016/j.cemconcomp.2008.02.001
  • Adhikary S.K., Ashish D.K. & Rudžionis Z., (2021). Expanded glass as light-weight aggregate in concrete – A review, Journal of Cleaner Production Volume 313, 127848. DOI: https://doi.org/10.1016/j.jclepro.2021.127848
  • Owoeye S.S., Matthew G.O., Ovienmhanda F.O. & Tunmilayo S.O., (2020). Preparation and characterization of foam glass from waste container glasses and water glass for application in thermal insulations, Ceramics International, 46 (8), Part B, p. 11770-11775, DOI: https://doi.org/10.1016/j.ceramint.2020.01.211.
  • Mohajerani A., Vajna J., Cheung T.H.H., Kurmus H., Arulrajah A. & Horpibulsuk S., (2017). Practical recycling applications of crushed waste glass in construction materials: A review, Construction and Building Materials, 156, s. 443-467, DOI: https://doi.org/10.1016/j.conbuildmat.2017.09.005.
  • Bahadori A., (2014)., Thermal insulation handbook for the oil, gas, and petrochemical industries, chapter three- material selection for thermal ınsulation, p.239-301. Gulf Professional Publishin. DOI: https://doi.org/10.1016/B978-0-12-800010-6.00003-4
  • Özer, N., & Acun Özgünler, S. (2019). Yapılarda yaygın kullanılan ısı yalıtım malzemelerinin performans özelliklerinin duvar kesitleri üzerinde değerlendirilmesi. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 24(2), 25-48. Erişim adresi, https://dergipark.org.tr/tr/download/article-file/777815
  • Guo P., Meng W., Du J., Stevenson L., Han B. & Bao Y., (2023). Lightweight ultra-high-performance concrete (UHPC) with expanded glass aggregate: Development, characterization, and life-cycle assessment, Construction and Building Materials, Volume 371. DOI: https://doi.org/10.1016/j.conbuildmat.2023.130441
  • Kurpi M., Grzyl B., Pszczola M. & Kristowski A., (2019). The Application of granulated expanded glass aggregate with cement grout as an alternative solution for sub-grade and frost-protection sub-base layer in road construction, Materials, 12(21), 3528. DOI: https://doi.org/10.3390/ma12213528.
  • Altuncı, Y. T., Öcal, C., Saplıoğlu, K., İnce, H. H., vd. (2021). Genleştirilmiş cam agrega ve genleştirilmiş perlit agrega ikameli şap betonlarının bazı fiziksel özelliklerinin araştırılması. Teknik Bilimler Dergisi, 11(2), 8-13. DOI: https://doi.org/10.35354/tbed.918849.
  • Altuncı Y. T., Öcal C., Saplıoğlu K., İnce H.H. & Cevikbas M., (2021). Genleştirilmiş cam agregalı ve genleştirilmiş perlit agregalı şap harçlarının performans özelliklerinin belirlenmesi, El-Cezeri Journal of Science and Engineering, vol. 8, no. 1, pp. 11–20, DOI: https://doi.org/10.31202/ecjse.753475.
  • Aktürk, B., Dayi, M., & Aruntaş, H. Y. (2021). Genleştirilmiş cam küre agrega katkılı harçların bazı özelliklerinin incelenmesi. Duzce University Journal of Science and Technology, 9(1), 443-452. DOI: https://doi.org/10.29130/dubited.729582
  • Tazeoğlu F., 21. yy.’da seramik ve cam malzemelerin mimaride yüzey oluşturma ve kaplamada kullanımı, (2016), Yüksek Lisans Tezi, Anadolu Üniversitesi Güzel Sanatlar Enstitüsü, Seramik Anasanat Dalı, Eskişehir.
  • Kántor, P., Béri, J., Képes, B. & Székely, E., (2024). Glass wool recycling by water-based solvolysis. ChemEngineering, 8, 93. DOI: https://doi.org/10.3390/chemengineering8050093
  • Topçu, İ. B., & Kural, R. (2023). Saydam betonun özellikleri üzerine bir çalişma, Kahramanmaraş Sütçü İmam Üniversitesi, Mühendislik Bilimleri Dergisi, 26(3), 784-794. DOI: https://doi.org/10.17780/ksujes.1207991.
  • Çetinkale Demirkan G., (2023), Atık cam malzemenin peyzaj tasarımlarında kullanılabilirliği, Online Journal of Art and Design, 11(5) 382-389. DOI: https://adjournal.net/articles/115/11524.pdf
  • Real Baek C., Kim H.D. & Jang Y.C., (2025). Exploring glass recycling: Trends, technologies, and future trajectories, Environmental Engineering Research, 30(3) 240241. DOI: https://doi.org/10.4491/eer.2024.241
  • Harrison E., Berenjian A. & Seifan M., (2020). Recycling of waste glass as aggregate in cement-based materials, Environmental Science and Ecotechnology, 4, 100064, DOI: https://doi.org/10.1016/j.ese.2020.100064.
  • Makowski, C., Finkl, C. W., & Rusenko, K. (2011). Using recycled glass cullet for coastal protection: a review of geotechnical, biological, & Abiotic Analyses. Journal of Coastal Research, 1362–1366. Retrieved from, http://www.jstor.org/stable/26482398
  • Tao Y., Hadigheh S.A. & Wei Y., (2023). Recycling of glass fibre reinforced polymer (GFRP) composite wastes in concrete: A critical review and cost benefit analysis, Structures, 53, p.1540-1556, DOI: https://doi.org/10.1016/j.istruc.2023.05.018.
  • Scaffaro R., Di Bartolo A. & Dintcheva N.T., (2021). Matrix and filler recycling of carbon and glass fiber reinforced polymer composites: a review, Polymers, 13, 3817. DOI: https://doi.org/10.3390/ polym13213817.
  • Şenol A.F., (2023). Endüstriyel atık tozları ile üretilen geopolimer harç ve betonların özellikleri, 2nd International Conference on Innovative Academic Studies, Konya, Turkey. Erişim adresi, https://www.researchgate.net/publication/368336323
  • Gök S.G. & Şengül Ö., (2023). Geopolimer üretiminde atık cam kullanımı, Beton 2023 Kongresi Bildirileri, 8,10 Kasım 2023, s: 588-597. Erişim tarihi, 20 Nisan 2025. Adresi, https://www.thbbakademi.org/wp-content/uploads/2023/10/Geopolimer-Uretiminde-Atik-Cam-Kullanimi.pdf
  • Yuan X., Wang J., Song Q. & Xu Z., (2024). Integrated assessment of economic benefits and environmental impact in waste glass closed-loop recycling for promoting glass circularity, Journal of Cleaner Production, 444: 141155, DOI: https://doi.org/10.1016/j.jclepro.2024.141155
  • Glass Pavilion at the Toledo Museum of Art / SANAA, Erişim tarihi, Aralık 2024. Adresi, https://www.archdaily.com/54199/glass-pavilion-at-the-toledo-museum-of-art-sanaa-pritzker-prize-2010
  • The Crystal, Erişim tarihi, Aralık 2024. Adresi, https://www.archdaily.com/275111/the-crystal-wilkinson-eyre-architects?ad_source=search&ad_medium=projects_tab
  • The Edge, Erişim tarihi, Aralık 2024. Adresi, https://www.archdaily.com/785967/the-edge-plp-architecture
  • Garanti BBVA Teknoloji Kampüsü, Erişim tarihi, Aralık 2024. Adresi, https://www.arkitektuel.com/garanti-bbva-teknoloji-kampusu/
  • Wat Pa Maha Chedi Kaew, Erişim tarihi, Aralık 2024. Adresi, https://itsbetterinthailand.com/activities/wat-pa-maha-chedi-kaew-wat-lan-khuad-a-temple-made-out-of-glass-bottles-sisaket
  • Şişecam, (2023), Sürdürülebilirlik raporu, Erişim tarihi, Aralık 2024. Adresi, https://www.sisecam.com.tr/sites/catalogs/tr/Documents/sustainability/sisecamsurdurulebilirlik2023.pdf
  • Ahmad, F., Khan, F., & Khan, A., (2021). Potential use of recycled materials on rooftops to improve thermal comfort in sustainable building construction projects. Frontiers in Built Environment, 7(1): 101-112. DOI: https://doi.org/10.3389/fbuil.2022.1014473
  • Müller, J., & Rieger, T. (2018). Recycled materials in the construction sector: Environmental and economic benefits. Sustainable Materials and Technologies, 16: 1-7. DOI: https://doi.org/10.1016/j.susmat.2018.07.001
Toplam 81 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mimari Mühendislik, Yapı Malzemeleri
Bölüm Araştırma Makaleleri
Yazarlar

Gizem Ertaş 0009-0003-4051-3337

Esma Mıhlayanlar 0000-0002-0020-2839

Yayımlanma Tarihi 31 Temmuz 2025
Gönderilme Tarihi 17 Şubat 2025
Kabul Tarihi 10 Temmuz 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 8 Sayı: 1