BibTex RIS Kaynak Göster

Geostatistical analysis of spatial variation in forest ecosystems

Yıl 2018, Cilt: 6 Sayı: 1, 9 - 22, 24.02.2018

Öz

Geostatistical methods are widely used for evaluation of spatial variations of terrestrial ecosystems.  Spatial variation of forest ecosystems can provide considerable implications for sustainable management of forest resources. In addition, knowledge on spatial variation of forest soils is necessary for an adequate understanding of the soil's role on forest vegetation and making precise estimates on ecosystem-level processes.  Number of studies have been conducted on spatial variation of forest ecosystems.   In this study, first, we discussed the sources of spatial variation in forest ecosystems and then discussed application of geostatistics for characterizing spatial variation on forest variables. 

Kaynakça

  • Bellingham, P.J., Tanner, E.V.J. (2000). The influence of topography on tree growth, mortality, and recruitment in a tropical Montane Forest. Biotropica 32 (3), 378–384.
  • Brus, D.J., De Gruijter, J.J., Marsman, B.A., Visschers, R., Bregt, A.K., Breeuwsma, A., Bouma, J. (1996). The performance of spatial interpolation methods and choropleth maps to estimate properties at points: a soil survey case study. Environmetrics, 7(1), 1-16.
  • Borůvka, L., Mládková, L., Penížek, L.V., Drábek, O., Vašát, R. (2007). Forest soil acidification assessment using principal component analysis and geostatistics. Geoderma 140 (2007) 374–382.
  • Bourgeron, P.S. (1983). Spatial aspects of vegetation structure. Pp. 29-47 in Golley, F. B. (ed.). Ecosystems of the world 14A - Tropical rain forest ecosystems, structure and function. Elsevir, Amsterdam.
  • Brubaker, S.C., Jones, A.J., Lewis, D.T., Frank, K. (1993). Soil properties associated with landscape position. Soil Sci. Soc. Am. J. 57: 235–239.
  • Burrough, P.A., McDonnell, R.A. (1998). Creating continuous surfaces from point data. Principles of Geographic Information Systems. Oxford University Press, Oxford, UK.
  • Castilho, C.V., Magnusson, W.E., Arau´jo, R.N.O., Luiza˜o, R.C.C., Luiza˜o, F.J., Lima, A.P., Higuchi, N. (2006). Variation in aboveground tree live biomass in a central Amazonian Forest: Effects of soil and topography. Forest Ecology and Management 234, 85–96.
  • Chauvel, A., Lucas, Y., Boulet, B. (1987). On the genesis of the soil mantle of the region of Manaus, central Amazonia, Brazil. Experientia 43, 234–241.
  • Chave, J., Condit, R., Lao, S., Caspersen, J.P., Foster, R.B., Hubbell, S.P. (2003). Spatial and temporal variation of biomass in a tropical forest: results from a large census plot in Panama. J. Ecol. 91, 240–252. 2003.
  • Collins, F.C., Bolstad, P.V.B. (1996). A comparison of spatial interpolation techniques in temperature estimation. Proceedings of the Third International Conference/Workshop on Integrating GIS and Environmental Modeling, Santa Barbara, January 21–26.
  • Daws, M.I., Mullins, C.E., Burslem, D.F.R.P., Paton, S.R., Dalling, J.W. (2002). Topographic position affects the water regime in a semideciduous tropical forest in Panama´. Plant Soil 238, 79–90.
  • De Bruin, S. (2000). Predicting the areal extent of landcover types using classified imagery and geostatistics. Remote Sensing of Environment 74: 387–396.
  • Desbarats, A.J. (1996). Modeling spatial variability using geostatistical simulation. In Geostatistics for environmental and geotechnical applications. ASTM International.
  • Deutch C.V., Journel, A.G. (1998). GSLIB Geostatistical Software Library. Oxfor University Press.
  • Field, C.B., Jackson, R.B., Mooney, H.A. (1995). Stomatal responses to increased CO2: implications from the plants to the global scale. Plant, Cell and Environment 18, 1214–1225.
  • Flannigan, M.D., Stocks, U.B.J., Wotton, B.M. (2000). Climate change and forest fires. The Science of the Total Environment 262, 221-229.
  • Gale, N., Barfod, A.S. (1999). Canopy tree mode of death in a western Ecuadorian rain forest. J. Trop. Ecol. 15, 415–436.
  • Gallardo, A. (2003). Spatial Variability of Soil Properties in a Floodplain Forest in Northwest Spain. Ecosystems, 6: 564–576.
  • Griffiths, R.P., Madritch, M.D., Swanson, A.K. (2009). The effects of topography on forest soil characteristics in the Oregon Cascade Mountains (USA): Implications for the effects of climate change on soil properties. Forest Ecology and Management 257, 1–7.
  • Goodland, R., Pollard, R. (1973). The Brazilian cerrado vegetation:a fertility gradient.J.Ecol. 61:219–224.
  • Gonzalez, O.J., Zak, D.R. (1994). Geostatistical analysis of soil properties in a secondary tropical dry forest. Plant and Soil 163: 45-54.
  • Hadley, K.S. (1994). The role of disturbance, topography, and forest structure in the development of a montane forest landscape. Bulletin of the Torrey Botanical Club 121(1), pp. 47-61.
  • He, Z.B., Yang, J.J., Du, J., Zhao, W.Z., Liu, H., Chang, X.X. (2013). Spatial variability of canopy interception in a spruce forest of the semiarid mountain regions of China. Agri. and Forest Meteorology 188, 58–63.
  • Hengl, T., Heuvelink, G.B., Rossiter, D.G. (2007). About regression-kriging: from equations to case studies. Computers & Geosciences, 33(10), 1301-1315.
  • Houghton, R.A., Lawrence, K.T., Hackler, J.L., Brown, S. (2001). The spatial distribution of forest biomass in the Brazilian Amazon: a comparison of estimates. Global Change Biol. 7, 731–746. 2001.
  • Houghton, R.A. (2005). Aboveground forest biomass and the global carbon balance. Global Chn. Biol.11, 945–958.
  • Hungate, B.A., Dukes, J.S., Shaw, M.R., Luo, Y., Field, C.B. (2003). Nitrogen and Climate Change. Science 302, 1512–1513.
  • Hupet, F., Manclooster, V. (2002). Intraseasonal dynamics of soil moisture variability within a small agricultural maize cropped field. Journal of Hydrology 261, 86–101.
  • Isaak, E.H., Srivastava, R.M. (1989). An Introduction to Applied Geostatistics. Oxford U Press, NY, pp. 520 561.
  • Jeyanny, V., Balasundram, S.K.,. Husni, M.H.A., Wan Rasidah, K., Arifin, A. (2013). Spatial Variability Of Selected Forest Soil Properties Related To Carbon Management In Tropical Lowland And Montane Forests. Journal of Tropical Forest Science 25(4): 577–59.
  • Johnston, M.H. (1992). Soil-vegetation relationships in a tabonuco forest community in the Luquillo Mountains of Puerto Rico. J. Trop. Ecol. 8: 253–263.
  • Journel, A.G., Huijbregts, C.J. (1978). Mining Geostatistics. Academic Press, London, 600 pp.
  • Kahle, H.P., Karjalainen, T., Schuck, A., Agren, G.I., Kellomaki, S., Mellert, K.H., Prietzel, J., Rehfuess, K.E., Spiecker, H. (Eds.) (2008). Causes and Consequences of Forest Growth Trends in Europe – Results of the Recognition Project. EFI Research Report 21, Brill Leiden, Boston, Koln.
  • Krige, D.G. (1951). A statistical approach to some mine valuations problems at the Witwatersrand. Journal of the Chemical, Metallurgical and Mining Society of South Africa, 52: 119-139.
  • Kristensen, T., Ohlson, M., Bolstad,P., Nagy, Z. (2015).Spatial variability of organic layer thickness and carbon stocks in mature boreal forest stands—implications and suggestions for sampling designs. Environ Monit Assess (2015) 187: 521.
  • Laurance, W.F., Fearnside, P.M., Laurance, S.G., Delamonica, P., Lovejoy, T.E., Rankin-de-Merona, J.M., Chambers, J., Gascon, C. (1999). Relationship between soils and Amazon forest biomass: a landscape-scale study. Forest Ecol. Manage. 118, 127–138.
  • Li, J. and Heap, A.D. (2008). A review of spatial interpolation methods for environmental scientists.137-145.
  • Lindner, M., Maroschek, M., Netherer, S., Kremer, A., Barbati, A., Garcia-Gonzalo, J., Seidl, R., Delzon, S., Corona, P., Kolstrom, M., Lexer, M.J., Marchetti, M. (2010). Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. Forest Ecology and Management 259, 698–709.
  • Luizao, R.C.C., Luizao,F.J., Paiva, R.Q., Monteiro, T.F., Sousa, L.S., Kruijt, B. (2004). Variation of carbon and nitrogen cycling processes along a topographic gradient in a Central Amazonian forest. Global Change Biol. 10, 592–600.
  • Luo, Y., Su, B., Currie, W.S., Dukes, J.S., Finzi, A., Hartwig, U., Hungate, B., McMurtrie, R.E., Oren, R., Parton, W.J., Pataki, D.E., Shaw, M.R., Zak, D.R., Field, C.B. (2004). Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. BioScience 54, 731–739.
  • MacEachren, A.M., Davidson, J.V.(1987). Sampling and isometric mapping of continuous geographic surfaces. The American Cartographer 14.4: 299-320.
  • Matyssek, R., Le Thiec, D., Low, M., Dizengremel, P., Nunn, A.J., Haberle, K.H (2006). Interactions between drought and O3 stress in forest trees. Plant Biology 8, 11–17.
  • McLaughlin, S.B., Wullschleger, S.D., Sun, G., Nosa, M. (2007). Interactive effects of ozone and climate on water use, soil moisture content and streamflow in a southern Appalachian forest in the USA. New Phytologist 174, 125–136.
  • Magnani, F., Mencuccini, M., Borghetti, M., Berbigier, P., Berninger, F., Delzon, S., Grelle, A., Hari, P., Jarvis, P.G., Kolari, P., Kowalski, A.S., Lankreijer H., Law,B.E., Lindroth, A., Loustau, D., Manca, J.G., Moncrieff, B., Rayment, M., Tedeschi, V., Valentini, R., and Grace, J. (2007). The human footprint in the carbon cycle of temperate and boreal forests. Nature 447, 849–851.
  • Perry, D.A. (1994). Forest Ecosystems. The Johns Hopkins University Press, Baltimore.
  • Picon, C., Guehl, J.M., Aussenac, G. (1996). Growth dynamics, transpiration and water-use efficiency in Quercus robur plants submitted to elevated CO2 and drought. Annales des Sciences Forestieres 53, 431–446.
  • Robert, A. (2003). Simulation of the effect of topography and tree falls on stand dynamics and stand structure of tropical forest. Ecol. Modell. 167, 287–303.
  • Rossi, R.E., Mulla, D.J., Journel, A.G., Franz, E.H. (1992). Geostatistical tools for modeling and interpreting ecological spatial dependence. Ecological monographs, 62(2), 277-314.
  • Scheller, R.M., Mladenoff, D.J. (2002). Understory Species Patterns And Diversity in Old-Growth and Managed Northern Hardwood Forests. Ecological Applications, 12(5), 2002, pp. 1329-1343.
  • Schimel, D.S., Coleman, D.C., Horton, K.A. (1985a). Soil organic matter dynamics in paired rangeland and cropland toposequences in North Dakota. Geoderma 36, 201–214.
  • Schoenholtz, S.H., Van Miegroet, H., Burger, J.A. (2000). A review of chemical and physical properties as indicators of forest soil quality: challenges and opportunities. Forest ecology and management, 138(1), 335-356.
  • Schume, H., Jost, G., Katzensteiner, K. (2003). Spatio-temporal analysis of the soil water content in a mixed Norway spruce (Picea abies (L.) Karst.)European beech (Fagus sylvatica L.) stand. Geoderma 112, 273– 287.
  • Schume, H., Jost, G., Hager, H. (2004). Soil water depletion and recharge patterns in mixed and pure forest stands of European beech and Norway spruce. Journal of Hydrology 289 (2004) 258–274.
  • Shakeel, A., De Marsily, G. (1987). Comparison of geostatistical methods for estimating transmissivity using data on transmissivity and specific capacity. Water resources research 23.9: 1717-1737.
  • Silva, R.P., dos Santos, J., Tribuzy, E.S., Chambers, J.Q., Nakamura, S., Higuchi, N. (2002). Diameter increment and growth patterns for individual trees growing in central Amazon, Brazil. Forest Ecol. Manage.166, 295–301.
  • Striegl, R.G., Wickland, K.P. (1998). Effects of a clear-cut harvest on soil respiration in a jack pine-lichen woodland. Can. J. For. Res. 28, 534±539.
  • Swanson, F.J., Kratz, T.K., Caine, N., Woodmansee, R.G. (1988). Landform effects on eco- system patterns and processes. BioScience 38: 92- 98.
  • Weber, M.G., Flannigan, M.D. (1997). Canadian boreal forest ecosystem structure and function in a changing climate: impact on fire regimes. Environ Rev 1997;5:145-166.
  • Webster, W., Oliver, M. (2001). Geostatistics for Environmental Scientists. J.Wiley & Sons, Chichester, 271 pp.
  • Wendroth, O., Pohl, W., Koszinski, S., Rogasik, H., Ritsema, C.J., Nielsen, D.R. (1999). Spatio-temporal patterns and covariance structures of soil water status in two Northeast-German field sites. J. of Hydrology 215, 38–58.
  • Western, A.W., Bloschl,G., Grayson, R.B. (1998). Geostatistical characterisation of soil moisture patterns in the Tarrawarra catchment. Journal of Hydrology 205, 20– 37.
  • Westoby, J. (1989). Introduction to world forestry: people and their trees. Basil Blackwell Ltd., Oxf. 228 p.
  • Wittig, V.E., Ainsworth, E.A., Naidu, S.L., Karnosky, D.F., Long, S.P. (2009). Quantifying the impact of current and future tropospheric ozone on tree biomass, growth, physiology and biochemistry: a quantitative meta-analysis. Global Change Biology 15, 396–424.
  • Yonker, C.M., Schimel, D.S., Paroussis, E., Heil, R.D. (1988). Patterns of organic carbon accumulation in a semiarid shortgrass steppe, Colorado. Soil Sci. Soc. Am. J. 52, 478–483.
  • Zawadzki, J., Cieszewski, C.J., Zasada, M., Lowe, R. (2005). Applying Geostatistics for Investigations of Forest Ecosystems Using Remote Sensing Imagery. Fennica 39(4): 599–617.
  • Zhang, Y. (2011). Introduction to Geostatistics. Course Notes. Uni. of Wyoming, Draft date January. 12.
  • Zhou, F., Guo, H.C., Ho,Y.S., Wu, C.Z. (2007). Scientometric analysis of geostatistics using multivariate methods. Scientometrics, 73(3): 265-279.
Yıl 2018, Cilt: 6 Sayı: 1, 9 - 22, 24.02.2018

Öz

Kaynakça

  • Bellingham, P.J., Tanner, E.V.J. (2000). The influence of topography on tree growth, mortality, and recruitment in a tropical Montane Forest. Biotropica 32 (3), 378–384.
  • Brus, D.J., De Gruijter, J.J., Marsman, B.A., Visschers, R., Bregt, A.K., Breeuwsma, A., Bouma, J. (1996). The performance of spatial interpolation methods and choropleth maps to estimate properties at points: a soil survey case study. Environmetrics, 7(1), 1-16.
  • Borůvka, L., Mládková, L., Penížek, L.V., Drábek, O., Vašát, R. (2007). Forest soil acidification assessment using principal component analysis and geostatistics. Geoderma 140 (2007) 374–382.
  • Bourgeron, P.S. (1983). Spatial aspects of vegetation structure. Pp. 29-47 in Golley, F. B. (ed.). Ecosystems of the world 14A - Tropical rain forest ecosystems, structure and function. Elsevir, Amsterdam.
  • Brubaker, S.C., Jones, A.J., Lewis, D.T., Frank, K. (1993). Soil properties associated with landscape position. Soil Sci. Soc. Am. J. 57: 235–239.
  • Burrough, P.A., McDonnell, R.A. (1998). Creating continuous surfaces from point data. Principles of Geographic Information Systems. Oxford University Press, Oxford, UK.
  • Castilho, C.V., Magnusson, W.E., Arau´jo, R.N.O., Luiza˜o, R.C.C., Luiza˜o, F.J., Lima, A.P., Higuchi, N. (2006). Variation in aboveground tree live biomass in a central Amazonian Forest: Effects of soil and topography. Forest Ecology and Management 234, 85–96.
  • Chauvel, A., Lucas, Y., Boulet, B. (1987). On the genesis of the soil mantle of the region of Manaus, central Amazonia, Brazil. Experientia 43, 234–241.
  • Chave, J., Condit, R., Lao, S., Caspersen, J.P., Foster, R.B., Hubbell, S.P. (2003). Spatial and temporal variation of biomass in a tropical forest: results from a large census plot in Panama. J. Ecol. 91, 240–252. 2003.
  • Collins, F.C., Bolstad, P.V.B. (1996). A comparison of spatial interpolation techniques in temperature estimation. Proceedings of the Third International Conference/Workshop on Integrating GIS and Environmental Modeling, Santa Barbara, January 21–26.
  • Daws, M.I., Mullins, C.E., Burslem, D.F.R.P., Paton, S.R., Dalling, J.W. (2002). Topographic position affects the water regime in a semideciduous tropical forest in Panama´. Plant Soil 238, 79–90.
  • De Bruin, S. (2000). Predicting the areal extent of landcover types using classified imagery and geostatistics. Remote Sensing of Environment 74: 387–396.
  • Desbarats, A.J. (1996). Modeling spatial variability using geostatistical simulation. In Geostatistics for environmental and geotechnical applications. ASTM International.
  • Deutch C.V., Journel, A.G. (1998). GSLIB Geostatistical Software Library. Oxfor University Press.
  • Field, C.B., Jackson, R.B., Mooney, H.A. (1995). Stomatal responses to increased CO2: implications from the plants to the global scale. Plant, Cell and Environment 18, 1214–1225.
  • Flannigan, M.D., Stocks, U.B.J., Wotton, B.M. (2000). Climate change and forest fires. The Science of the Total Environment 262, 221-229.
  • Gale, N., Barfod, A.S. (1999). Canopy tree mode of death in a western Ecuadorian rain forest. J. Trop. Ecol. 15, 415–436.
  • Gallardo, A. (2003). Spatial Variability of Soil Properties in a Floodplain Forest in Northwest Spain. Ecosystems, 6: 564–576.
  • Griffiths, R.P., Madritch, M.D., Swanson, A.K. (2009). The effects of topography on forest soil characteristics in the Oregon Cascade Mountains (USA): Implications for the effects of climate change on soil properties. Forest Ecology and Management 257, 1–7.
  • Goodland, R., Pollard, R. (1973). The Brazilian cerrado vegetation:a fertility gradient.J.Ecol. 61:219–224.
  • Gonzalez, O.J., Zak, D.R. (1994). Geostatistical analysis of soil properties in a secondary tropical dry forest. Plant and Soil 163: 45-54.
  • Hadley, K.S. (1994). The role of disturbance, topography, and forest structure in the development of a montane forest landscape. Bulletin of the Torrey Botanical Club 121(1), pp. 47-61.
  • He, Z.B., Yang, J.J., Du, J., Zhao, W.Z., Liu, H., Chang, X.X. (2013). Spatial variability of canopy interception in a spruce forest of the semiarid mountain regions of China. Agri. and Forest Meteorology 188, 58–63.
  • Hengl, T., Heuvelink, G.B., Rossiter, D.G. (2007). About regression-kriging: from equations to case studies. Computers & Geosciences, 33(10), 1301-1315.
  • Houghton, R.A., Lawrence, K.T., Hackler, J.L., Brown, S. (2001). The spatial distribution of forest biomass in the Brazilian Amazon: a comparison of estimates. Global Change Biol. 7, 731–746. 2001.
  • Houghton, R.A. (2005). Aboveground forest biomass and the global carbon balance. Global Chn. Biol.11, 945–958.
  • Hungate, B.A., Dukes, J.S., Shaw, M.R., Luo, Y., Field, C.B. (2003). Nitrogen and Climate Change. Science 302, 1512–1513.
  • Hupet, F., Manclooster, V. (2002). Intraseasonal dynamics of soil moisture variability within a small agricultural maize cropped field. Journal of Hydrology 261, 86–101.
  • Isaak, E.H., Srivastava, R.M. (1989). An Introduction to Applied Geostatistics. Oxford U Press, NY, pp. 520 561.
  • Jeyanny, V., Balasundram, S.K.,. Husni, M.H.A., Wan Rasidah, K., Arifin, A. (2013). Spatial Variability Of Selected Forest Soil Properties Related To Carbon Management In Tropical Lowland And Montane Forests. Journal of Tropical Forest Science 25(4): 577–59.
  • Johnston, M.H. (1992). Soil-vegetation relationships in a tabonuco forest community in the Luquillo Mountains of Puerto Rico. J. Trop. Ecol. 8: 253–263.
  • Journel, A.G., Huijbregts, C.J. (1978). Mining Geostatistics. Academic Press, London, 600 pp.
  • Kahle, H.P., Karjalainen, T., Schuck, A., Agren, G.I., Kellomaki, S., Mellert, K.H., Prietzel, J., Rehfuess, K.E., Spiecker, H. (Eds.) (2008). Causes and Consequences of Forest Growth Trends in Europe – Results of the Recognition Project. EFI Research Report 21, Brill Leiden, Boston, Koln.
  • Krige, D.G. (1951). A statistical approach to some mine valuations problems at the Witwatersrand. Journal of the Chemical, Metallurgical and Mining Society of South Africa, 52: 119-139.
  • Kristensen, T., Ohlson, M., Bolstad,P., Nagy, Z. (2015).Spatial variability of organic layer thickness and carbon stocks in mature boreal forest stands—implications and suggestions for sampling designs. Environ Monit Assess (2015) 187: 521.
  • Laurance, W.F., Fearnside, P.M., Laurance, S.G., Delamonica, P., Lovejoy, T.E., Rankin-de-Merona, J.M., Chambers, J., Gascon, C. (1999). Relationship between soils and Amazon forest biomass: a landscape-scale study. Forest Ecol. Manage. 118, 127–138.
  • Li, J. and Heap, A.D. (2008). A review of spatial interpolation methods for environmental scientists.137-145.
  • Lindner, M., Maroschek, M., Netherer, S., Kremer, A., Barbati, A., Garcia-Gonzalo, J., Seidl, R., Delzon, S., Corona, P., Kolstrom, M., Lexer, M.J., Marchetti, M. (2010). Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. Forest Ecology and Management 259, 698–709.
  • Luizao, R.C.C., Luizao,F.J., Paiva, R.Q., Monteiro, T.F., Sousa, L.S., Kruijt, B. (2004). Variation of carbon and nitrogen cycling processes along a topographic gradient in a Central Amazonian forest. Global Change Biol. 10, 592–600.
  • Luo, Y., Su, B., Currie, W.S., Dukes, J.S., Finzi, A., Hartwig, U., Hungate, B., McMurtrie, R.E., Oren, R., Parton, W.J., Pataki, D.E., Shaw, M.R., Zak, D.R., Field, C.B. (2004). Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. BioScience 54, 731–739.
  • MacEachren, A.M., Davidson, J.V.(1987). Sampling and isometric mapping of continuous geographic surfaces. The American Cartographer 14.4: 299-320.
  • Matyssek, R., Le Thiec, D., Low, M., Dizengremel, P., Nunn, A.J., Haberle, K.H (2006). Interactions between drought and O3 stress in forest trees. Plant Biology 8, 11–17.
  • McLaughlin, S.B., Wullschleger, S.D., Sun, G., Nosa, M. (2007). Interactive effects of ozone and climate on water use, soil moisture content and streamflow in a southern Appalachian forest in the USA. New Phytologist 174, 125–136.
  • Magnani, F., Mencuccini, M., Borghetti, M., Berbigier, P., Berninger, F., Delzon, S., Grelle, A., Hari, P., Jarvis, P.G., Kolari, P., Kowalski, A.S., Lankreijer H., Law,B.E., Lindroth, A., Loustau, D., Manca, J.G., Moncrieff, B., Rayment, M., Tedeschi, V., Valentini, R., and Grace, J. (2007). The human footprint in the carbon cycle of temperate and boreal forests. Nature 447, 849–851.
  • Perry, D.A. (1994). Forest Ecosystems. The Johns Hopkins University Press, Baltimore.
  • Picon, C., Guehl, J.M., Aussenac, G. (1996). Growth dynamics, transpiration and water-use efficiency in Quercus robur plants submitted to elevated CO2 and drought. Annales des Sciences Forestieres 53, 431–446.
  • Robert, A. (2003). Simulation of the effect of topography and tree falls on stand dynamics and stand structure of tropical forest. Ecol. Modell. 167, 287–303.
  • Rossi, R.E., Mulla, D.J., Journel, A.G., Franz, E.H. (1992). Geostatistical tools for modeling and interpreting ecological spatial dependence. Ecological monographs, 62(2), 277-314.
  • Scheller, R.M., Mladenoff, D.J. (2002). Understory Species Patterns And Diversity in Old-Growth and Managed Northern Hardwood Forests. Ecological Applications, 12(5), 2002, pp. 1329-1343.
  • Schimel, D.S., Coleman, D.C., Horton, K.A. (1985a). Soil organic matter dynamics in paired rangeland and cropland toposequences in North Dakota. Geoderma 36, 201–214.
  • Schoenholtz, S.H., Van Miegroet, H., Burger, J.A. (2000). A review of chemical and physical properties as indicators of forest soil quality: challenges and opportunities. Forest ecology and management, 138(1), 335-356.
  • Schume, H., Jost, G., Katzensteiner, K. (2003). Spatio-temporal analysis of the soil water content in a mixed Norway spruce (Picea abies (L.) Karst.)European beech (Fagus sylvatica L.) stand. Geoderma 112, 273– 287.
  • Schume, H., Jost, G., Hager, H. (2004). Soil water depletion and recharge patterns in mixed and pure forest stands of European beech and Norway spruce. Journal of Hydrology 289 (2004) 258–274.
  • Shakeel, A., De Marsily, G. (1987). Comparison of geostatistical methods for estimating transmissivity using data on transmissivity and specific capacity. Water resources research 23.9: 1717-1737.
  • Silva, R.P., dos Santos, J., Tribuzy, E.S., Chambers, J.Q., Nakamura, S., Higuchi, N. (2002). Diameter increment and growth patterns for individual trees growing in central Amazon, Brazil. Forest Ecol. Manage.166, 295–301.
  • Striegl, R.G., Wickland, K.P. (1998). Effects of a clear-cut harvest on soil respiration in a jack pine-lichen woodland. Can. J. For. Res. 28, 534±539.
  • Swanson, F.J., Kratz, T.K., Caine, N., Woodmansee, R.G. (1988). Landform effects on eco- system patterns and processes. BioScience 38: 92- 98.
  • Weber, M.G., Flannigan, M.D. (1997). Canadian boreal forest ecosystem structure and function in a changing climate: impact on fire regimes. Environ Rev 1997;5:145-166.
  • Webster, W., Oliver, M. (2001). Geostatistics for Environmental Scientists. J.Wiley & Sons, Chichester, 271 pp.
  • Wendroth, O., Pohl, W., Koszinski, S., Rogasik, H., Ritsema, C.J., Nielsen, D.R. (1999). Spatio-temporal patterns and covariance structures of soil water status in two Northeast-German field sites. J. of Hydrology 215, 38–58.
  • Western, A.W., Bloschl,G., Grayson, R.B. (1998). Geostatistical characterisation of soil moisture patterns in the Tarrawarra catchment. Journal of Hydrology 205, 20– 37.
  • Westoby, J. (1989). Introduction to world forestry: people and their trees. Basil Blackwell Ltd., Oxf. 228 p.
  • Wittig, V.E., Ainsworth, E.A., Naidu, S.L., Karnosky, D.F., Long, S.P. (2009). Quantifying the impact of current and future tropospheric ozone on tree biomass, growth, physiology and biochemistry: a quantitative meta-analysis. Global Change Biology 15, 396–424.
  • Yonker, C.M., Schimel, D.S., Paroussis, E., Heil, R.D. (1988). Patterns of organic carbon accumulation in a semiarid shortgrass steppe, Colorado. Soil Sci. Soc. Am. J. 52, 478–483.
  • Zawadzki, J., Cieszewski, C.J., Zasada, M., Lowe, R. (2005). Applying Geostatistics for Investigations of Forest Ecosystems Using Remote Sensing Imagery. Fennica 39(4): 599–617.
  • Zhang, Y. (2011). Introduction to Geostatistics. Course Notes. Uni. of Wyoming, Draft date January. 12.
  • Zhou, F., Guo, H.C., Ho,Y.S., Wu, C.Z. (2007). Scientometric analysis of geostatistics using multivariate methods. Scientometrics, 73(3): 265-279.
Toplam 67 adet kaynakça vardır.

Ayrıntılar

Bölüm Articles
Yazarlar

Gülay Karahan

Sabit Erşahin

Yayımlanma Tarihi 24 Şubat 2018
Gönderilme Tarihi 19 Temmuz 2017
Yayımlandığı Sayı Yıl 2018 Cilt: 6 Sayı: 1

Kaynak Göster

APA Karahan, G., & Erşahin, S. (2018). Geostatistical analysis of spatial variation in forest ecosystems. Eurasian Journal of Forest Science, 6(1), 9-22.

 

E-posta: hbarist@gmail.com 

 

Eurasian Journal of Forest Science © 2013 is licensed under CC BY 4.0cc.svg?ref=chooser-v1by.svg?ref=chooser-v1