Araştırma Makalesi
BibTex RIS Kaynak Göster

Yedi aktif farmasötik bileşenin Aliivibrio fischeri toksisite testi ile su ortamına olan etkilerinin değerlendirilmesi

Yıl 2021, Cilt: 9 Sayı: 2, 47 - 53, 17.07.2021
https://doi.org/10.31195/ejejfs.842507

Öz

Aktif farmasötik bileşenlerin çevresel kalıntıları, çevresel riskler ve sağlık sorunları ile ilişkilidir. Bunların çevreye olan etkileri toplumsal bir endişe konusu haline gelmiştir. Bu çalışmada; flurbiprofen, naproksen Na, propranolol HCl, karbamazepin, azitromisin, doksisiklin ve klindamisin ilaç etken maddelerinin toksisiteleri Aliivibrio fischeri toksisite testi kullanılarak belirlenmiştir. Aliivibrio fischeri toksisite testi deneyinde, ilaç etken maddelerinin 5. ve 15. dakika sonunda okunan değerlerine göre EC50 (mg/L) ve toksik birim (TB) hesaplanmıştır. 15. dk sonunda elde edilen EC50 değerlerine bakıldığında, EC50 değerleri en düşük çıkan ilaç aktif bileşenleri “doksisiklin, azitromisin ve klindamisin” dir. Bu antibiyotik grubu ilaç etken maddeleri “doksisiklin, azitromisin ve klindamisin” için EC50 değerleri sırasıyla; 0.10, 0.12 ve 0.76 mg/L olarak bulunmuştur. Farmasötiklerin Aliivibrio fischeri'ye akut toksisiteleri hakkında elde edilen veriler, ortaya çıkan kirleticilerle ilişkili çevresel risklerin değerlendirilmesini kolaylaştırabilir.

Kaynakça

  • Azur. (1997). Microtox manual, Azur Environmental. (formely microbics corporation), 2232 Rutherford Road, Carlsbad, CA.
  • Conforti, F., Ioele,. G., Statti, G., A., Marrelly,. M., Ragno, G., Menichini, F. (2008). Antiproferative activity aganist human. tumor cell lines and toxicity test on mediterranean dietary plants. Food Chem. Toxicol. 46, 3325-3332.
  • Cotou, E., Papathanassiou,. E., Tsangaris,. C. (2002). Assessing the quality of marine coastal environments; Comparion of scope for growth and Microtox. bioassay results of pollution gradient areas in eastern. mediterranean (Greece), Environ. Pollut. 119, 141-149. Ellis, J. B. (2006). Pharmaceutical and personal care products (PPCPs). in urban receiving waters. Environ. Pollut. 144, 184-189.
  • Escher, B.I., Fenner, K. (2011). Recent advances. in environmental risk assessment of transformation. products. Environ. Toxicol.
  • Farré, M., Ferrer, I., Ginebreda, A., Figueras, M., Olivella, L., Tirapu, L., Vilanova, M., Barcelό, D. (2001). Determination of drugs in surface water and wastewater samples by liquid chromatography-mass. spectromtry: Methods. and preliminary results. including toxicity studies with Vibrio fischeri. Journal Of Chromatography. A. 958, 187-197.
  • Fisher, J. C., Belden, J. B., Bidwell, J. R. (2010). Can site-specific. heuristic models. predict the toxicity of produced water. Chemosphere. 80, 542-547.
  • Gellert, G. (2000). Sensitivity. and significance of luminescent bacteria in chronic toxicity testing based on growth and bioluminescence. Ecotox. Environ. Safe.
  • Gottlieb, D. (1976). The production and role of antibiotics in soil. J. Antibiot. 29, 987- 1000.
  • Gultekin, I., Ince, N. H. (2007). Synthetic endocrine disruptors in the environment and water remediation by advanced oxidation processes. J. Environ. Manage. 85, 816-832.
  • Hamscher, G., Priess, B., Nau, H. (2006). A survey. of the occurrence of various sulfonamides and tetracyclines in water and sediment samples. originating from aquaculture systems in Northern Germany in summer 2005. Arch. Lebensmittelhyg. 57, 97-101.
  • Kümmerer, K. (2011). Emerging contaminants. In: Frimmel, F. (Ed.), Treatise on Water Science, Elsevier, Oxford, Vol. 3 pp. 69–88.
  • Le-Minh, N., Stuetz, R.M., Khan, S.J. (2012). Determination of six sulfonamide antibiotics, two metabolites and trimethoprim in wastewater by isotope dilution liquid chromatography/tandem. mass spectrometry. Talanta, 89, 407-416.
  • Marugan, J., Bru, D., Pablos, C., Catala, M. (2012). Comparative evaluation of acute toxicity by Vibrio fischeri and fern spore based bioassay in the follow-up of toxic. chemicals degradation by photocatalysis. J. Hazard. Mater. 213-214, 117-122.
  • Nas, B., Dolu, T., Ateş, H., Argun, M. E., Yel, E. (2017), Treatment alternatives for micropollutant removal in wastewater. Selçuk Üniversitesi Mühendislik Fakültesi. 5 (2), 133-141.
  • Parvez, S., Venkataraman, C., Mukherji, S. (2006). A review on advantages of implementing luminescence. inhibition test (Vibrio fischeri) for acute toxicity. prediction of chemicals. Environ. Int.
  • Persoonee, G., Goyvaerts, M.P., Janssen, C.R., de Coen W. And Vangheluwe, M. (1993). Cost-effective acute hazard moniturin of polluted waters and waste drumps with the aid of Toxkits. Final Report, CEC Contract ACE 89/BE 2/D3, VABRAP, University of Ghent, Belgium, 600 pages.
  • Qin, M., Yang, H., Chen, S., Xie, H., Guan, J. (2012). Photochemical characteristics of diclofenac and its photodegradation of inclusion. complexes with β-cyclodextrins. Quim. Nova. 35, 559-562.
  • Rickman, K.A., Mezyk, S.P. (2010). Kinetics and mechanisms of sulfate radical oxidation of b-lactam antibiotics in water. Chemosphere, 81, 359-365.
  • Schnell, Bols, S. N. C., Barata, C., Porte, C. (2009). Single and combined toxicity of pharmaceuticals and personal care products (PPCPs) on the rainbow trout liver cell line RTL-W1. Aquat. Toxicol. 93, 244-252.
  • Schwarzenbach, R.P., Escher, B.I., Fenner, K., Hofstetter, T.B., Johnson, C.A., von Gunten, U., Wehrli, B. (2006). The challenge of micropollutants in aquatic systems. Science.
  • Tongur, S., Yıldız, S., Yıldırım, R. (2019). Bazı ilaç gruplarının su ortamına olan etkilerinin akut toksisite testleri ile değerlendirilmesi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 23, 71-75. doi: 10. 19113/sdufenbed.435089.

Evaluation of the effects of seven active pharmaceutical ingredients on the aquatic environment with the Aliivibrio fischeri toxicity test

Yıl 2021, Cilt: 9 Sayı: 2, 47 - 53, 17.07.2021
https://doi.org/10.31195/ejejfs.842507

Öz

Aktif farmasötik bileşenlerin çevresel kalıntıları, çevresel riskler ve sağlık sorunları ile ilişkilidir. Bunların çevreye olan etkileri toplumsal bir endişe konusu haline gelmiştir. Bu çalışmada; flurbiprofen, naproksen Na, propranolol HCl, karbamazepin, azitromisin, doksisiklin ve klindamisin ilaç etken maddelerinin toksisiteleri Vibrio fischeri toksisite testi kullanılarak belirlenmiştir. Vibrio fischeri toksisite testi deneyinde, ilaç etken maddelerinin 5. ve 15. dakika sonunda okunan değerlerine göre EC50 (mg/L) ve toksik birim (TB) hesaplanmıştır. 15. dk sonunda elde edilen EC50 değerlerine bakıldığında, EC50 değerleri en düşük çıkan ilaç aktif bileşenleri “doksisiklin, azitromisin ve klindamisin” dir. Bu antibiyotik grubu ilaç etken maddeleri “doksisiklin, azitromisin ve klindamisin” için EC50 değerleri sırasıyla; 0.10, 0.12 ve 0.76 mg/L olarak bulunmuştur. Farmasötiklerin Vibrio fischeri'ye akut toksisiteleri hakkında elde edilen veriler, ortaya çıkan kirleticilerle ilişkili çevresel risklerin değerlendirilmesini kolaylaştırabilir.

Kaynakça

  • Azur. (1997). Microtox manual, Azur Environmental. (formely microbics corporation), 2232 Rutherford Road, Carlsbad, CA.
  • Conforti, F., Ioele,. G., Statti, G., A., Marrelly,. M., Ragno, G., Menichini, F. (2008). Antiproferative activity aganist human. tumor cell lines and toxicity test on mediterranean dietary plants. Food Chem. Toxicol. 46, 3325-3332.
  • Cotou, E., Papathanassiou,. E., Tsangaris,. C. (2002). Assessing the quality of marine coastal environments; Comparion of scope for growth and Microtox. bioassay results of pollution gradient areas in eastern. mediterranean (Greece), Environ. Pollut. 119, 141-149. Ellis, J. B. (2006). Pharmaceutical and personal care products (PPCPs). in urban receiving waters. Environ. Pollut. 144, 184-189.
  • Escher, B.I., Fenner, K. (2011). Recent advances. in environmental risk assessment of transformation. products. Environ. Toxicol.
  • Farré, M., Ferrer, I., Ginebreda, A., Figueras, M., Olivella, L., Tirapu, L., Vilanova, M., Barcelό, D. (2001). Determination of drugs in surface water and wastewater samples by liquid chromatography-mass. spectromtry: Methods. and preliminary results. including toxicity studies with Vibrio fischeri. Journal Of Chromatography. A. 958, 187-197.
  • Fisher, J. C., Belden, J. B., Bidwell, J. R. (2010). Can site-specific. heuristic models. predict the toxicity of produced water. Chemosphere. 80, 542-547.
  • Gellert, G. (2000). Sensitivity. and significance of luminescent bacteria in chronic toxicity testing based on growth and bioluminescence. Ecotox. Environ. Safe.
  • Gottlieb, D. (1976). The production and role of antibiotics in soil. J. Antibiot. 29, 987- 1000.
  • Gultekin, I., Ince, N. H. (2007). Synthetic endocrine disruptors in the environment and water remediation by advanced oxidation processes. J. Environ. Manage. 85, 816-832.
  • Hamscher, G., Priess, B., Nau, H. (2006). A survey. of the occurrence of various sulfonamides and tetracyclines in water and sediment samples. originating from aquaculture systems in Northern Germany in summer 2005. Arch. Lebensmittelhyg. 57, 97-101.
  • Kümmerer, K. (2011). Emerging contaminants. In: Frimmel, F. (Ed.), Treatise on Water Science, Elsevier, Oxford, Vol. 3 pp. 69–88.
  • Le-Minh, N., Stuetz, R.M., Khan, S.J. (2012). Determination of six sulfonamide antibiotics, two metabolites and trimethoprim in wastewater by isotope dilution liquid chromatography/tandem. mass spectrometry. Talanta, 89, 407-416.
  • Marugan, J., Bru, D., Pablos, C., Catala, M. (2012). Comparative evaluation of acute toxicity by Vibrio fischeri and fern spore based bioassay in the follow-up of toxic. chemicals degradation by photocatalysis. J. Hazard. Mater. 213-214, 117-122.
  • Nas, B., Dolu, T., Ateş, H., Argun, M. E., Yel, E. (2017), Treatment alternatives for micropollutant removal in wastewater. Selçuk Üniversitesi Mühendislik Fakültesi. 5 (2), 133-141.
  • Parvez, S., Venkataraman, C., Mukherji, S. (2006). A review on advantages of implementing luminescence. inhibition test (Vibrio fischeri) for acute toxicity. prediction of chemicals. Environ. Int.
  • Persoonee, G., Goyvaerts, M.P., Janssen, C.R., de Coen W. And Vangheluwe, M. (1993). Cost-effective acute hazard moniturin of polluted waters and waste drumps with the aid of Toxkits. Final Report, CEC Contract ACE 89/BE 2/D3, VABRAP, University of Ghent, Belgium, 600 pages.
  • Qin, M., Yang, H., Chen, S., Xie, H., Guan, J. (2012). Photochemical characteristics of diclofenac and its photodegradation of inclusion. complexes with β-cyclodextrins. Quim. Nova. 35, 559-562.
  • Rickman, K.A., Mezyk, S.P. (2010). Kinetics and mechanisms of sulfate radical oxidation of b-lactam antibiotics in water. Chemosphere, 81, 359-365.
  • Schnell, Bols, S. N. C., Barata, C., Porte, C. (2009). Single and combined toxicity of pharmaceuticals and personal care products (PPCPs) on the rainbow trout liver cell line RTL-W1. Aquat. Toxicol. 93, 244-252.
  • Schwarzenbach, R.P., Escher, B.I., Fenner, K., Hofstetter, T.B., Johnson, C.A., von Gunten, U., Wehrli, B. (2006). The challenge of micropollutants in aquatic systems. Science.
  • Tongur, S., Yıldız, S., Yıldırım, R. (2019). Bazı ilaç gruplarının su ortamına olan etkilerinin akut toksisite testleri ile değerlendirilmesi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 23, 71-75. doi: 10. 19113/sdufenbed.435089.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Orman Endüstri Mühendisliği
Bölüm Articles
Yazarlar

Süheyla Tongur 0000-0002-8647-6338

Sevil Yıldız Bu kişi benim 0000-0003-2873-9328

Yayımlanma Tarihi 17 Temmuz 2021
Gönderilme Tarihi 17 Aralık 2020
Yayımlandığı Sayı Yıl 2021 Cilt: 9 Sayı: 2

Kaynak Göster

APA Tongur, S., & Yıldız, S. (2021). Yedi aktif farmasötik bileşenin Aliivibrio fischeri toksisite testi ile su ortamına olan etkilerinin değerlendirilmesi. Eurasian Journal of Forest Science, 9(2), 47-53. https://doi.org/10.31195/ejejfs.842507

 

E-posta: hbarist@gmail.com 

 

Eurasian Journal of Forest Science © 2013 is licensed under CC BY 4.0cc.svg?ref=chooser-v1by.svg?ref=chooser-v1