Araştırma Makalesi
BibTex RIS Kaynak Göster

Farklı Bilişsel Stillere Sahip Öğrencilerin Kavramsal Anlama Düzeyleri: Farklı Ölçme Teknikleri Açısından Bir Değerlendirme

Yıl 2020, Cilt: 20 Sayı: 88, 149 - 178, 20.07.2020

Öz

Problem Durumu: Fen Bilimleri ve günlük yaşam arasındaki organik bağ göz önüne alındığında, fen derslerinin kavramsal düzeyde öğrenilmesini sağlamak ve kavramsal bilginin değerlendirilmesi, bireyin derste öğrendiği bilgiyi gerçek yaşamında beceriye dönüştürmesi, bu yol ile hayatı anlaması ve bilim perspektifinde çözüm üretmesi açısından önemlidir. Derinlemesine bir öğrenme olarak tanımlanan kavramsal anlamayı (Sinan, 2007) sağlayacak bir öğretim süreci şekillendirmenin tamamlayıcı bir unsuru ise öğretim yöntemleriyle uygun değerlendirme faaliyetlerinin tasarlanmasıdır (Black ve William, 1998; Yin, Tomita ve Shavelson, 2013; Tokiz, 2013). Fen bilimlerinin kavramlar düzeyinde öğrenilmesinde öğretim yöntemlerinin ve ortamlarının yapılandırılması ve bu yapıya uygun ölçme değerlendirme yaklaşımlarının kullanılması önemlidir. Ancak burada önem taşıyan bir diğer ana unsur ise öğretimin merkezindeki öğrencinin bireysel farklılıklarından kaynaklanan özellikleridir. Bu noktadan hareketle bu araştırmada fen bilimleri alanında pek çok araştırmada incelenen öğrenci başarısını en fazla etkileyen ve araştırmalarda farklı değişkenler ile etkileşimi bakımından ele alınan öğrencilerin alan bağımsız/alan bağımlı bilişsel stil (Witkin ve Goodenough, 1981) farklılıkları dikkate alınmıştır (Horzum ve Alper, 2006; Karaçam ve Ateş, 2010; Özarslan ve Bilgin, 2016; Sarı, Altıparmak ve Ateş, 2013). Bu araştırmada öğrencilerin kavramsal anlama düzeylerini belirlemede iki farklı türde ölçme aracı kullanılmıştır. Literatürde sıklıkla karşımıza çıkan ve kavramsal anlamayı değerlendirmede kullanılan bu ölçme tekniklerinin alan bağımlı ve alandan bağımsız bilişsel stile sahip öğrencilerin kuvvet konusundaki kavramsal anlama düzeylerini belirlemede ne gibi farklılıklar içerdiği ve ne tür sonuçlar ürettiği gözlemlenmeye çalışılmıştır. Araştırmanın bu yönüyle alana katkı sağlayacağı düşünülmektedir.
Araştırmanın Amacı: Bu araştırma ile farklı bilişsel stillere sahip yedinci sınıf öğrencilerinin Fen Bilimleri Dersi “kuvvet” konusundaki kavramsal anlama düzeylerinin farklı ölçme teknikleri ile belirlenmesi ve bu perspektifte öğrencilerin farklı ölçme teknikleri ile ölçülen kavramsal anlama düzeylerinin sahip oldukları bilişsel stillerden nasıl etkilendiğinin gözlemlenmesi amaçlanmıştır.
Araştırmanın Yöntemi: Bu çalışma bir nedensel karşılaştırma araştırması olarak tasarlanmıştır. Nedensel Karşılaştırma Yöntemi, kritik değişkenlerde farklılık gösteren ancak karşılaştırılabilir olan örneklemlerin karşılaştırılmasını içerir (Balcı,1995, s.264). Bu çalışmada da öğrencilerin alan bağımlı ve alan bağımsız bilişsel stilleri belirlenmiş, bu değişkenlerin kavramsal anlamayı belirlemede kullanılan farklı ölçme tekniklerinden elde edilen puan ortalamaları üzerindeki etkisine bakılmıştır. Çalışmanın örneklemini Ankara’da bir devlet okulunda yedinci sınıf düzeyinde öğrenim gören 80 öğrenci oluşturmaktadır. Öğrencilerin bilişsel stillerini belirlemek amacıyla Oltman, Raskin ve Witkin (1971) tarafından geliştirilen ve geçerlik ve güvenirlik çalışması yapılmış standart bir test olan Grup Saklı Figürler Testi kullanılmıştır. Öğrencilerin günlük yaşam bağlamlarını ve bu bağlamlar içinde öğrendikleri kavramları diğer bağlamlara ve kavramlara transfer edebilme düzeyleri ekseninde “Kuvvet” konusundaki temel kavramları anlama düzeylerini belirlemek amacıyla günlük yaşam içerisinden seçilen gerçek yaşam bağlamlarının kullanıldığı çoktan seçmeli formatta bir kavram testi geliştirilmiştir. Öğrencilerin “Kuvvet” konusuna ilişkin kavramsal anlama düzeylerini ortaya çıkarmak ve bilgi yapıları arasındaki farklılığı daha iyi belirleyebilmek amacıyla (Ruiz-Primo, Schultz ve Shavelson, 2001) kavram haritası diğer bir ölçme aracı olarak kullanılmıştır. Kuvvet konusunun öğretimi tamamlandıktan sonra öğrencilere konu ile ilgili 12 kavram verilmiş ve bu kavramları kullanarak bir kavram haritası çizmeleri istenmiştir. Kavram haritası ile değerlendirme yapılmadan önce öğrencilere Ruiz-Primo, Schultz ve Shavelson (1997a) önerdiği protokol referans alınarak 2 saatlik bir kavram haritası çizme öğretimi yapılmıştır. Öğrencilerin çizdikleri kavram haritaları Aydın Ceran (2018) tarafından geliştirilen ve güvenirlik ve geçerlik çalışmaları yapılan kriter kavram haritasına göre değerlendirilmiştir. Elde edilen kavram haritalarını puanlandırmak için ise kriter haritalı ilişkisel puanlama yöntemi kullanılmıştır (McClure, Sonak ve Suen, 1999). Yaşam Temelli Kavram Testi ve Kuvvet Kavram Haritası, birinci yazar tarafından kuvvet ünitesinin öğretimi yapıldıktan sonra uygulanmıştır. Araştırmada veri toplama araçlarında elde edilen veriler Tek Yönlü MANOVA, ANOVA ve t-testi yöntemiyle analiz edilmiş ve analizler Bulgular bölümünde sunulmuştur.

Kaynakça

  • Abayomi, B. I. (1989). The effects of concept mapping and cognitive style on science achievement. (Unpublished doctoral dissertation). Georgia State University, Collegeo Of Education. Retrieved from https://www.elibrary.ru/item.asp?id=7549483.
  • Ahmed, A., & Pollitt, A. (2007). Improving the quality of contextualized questions: An experimental investigation of focus. Assessment in Education, 14(2), 201-232.
  • Al-Naeme, F. F. A. (1991). The influence of various learning styles on practical problemsolving in chemistry in Scottish secondary schools. (Doctoral dissertation). University of Glamorgan. Retrieved from http://theses.gla.ac.uk/78304/.
  • Alamolhodaei, H. (1996). A study in higher education calculus and students' learning styles. (Doctoral dissertation). University of Glasgow. Retrieved from http://theses.gla.ac.uk/1259/
  • Altiparmak, M. (2009). Alan bağımlı ve alan bağımsız bilişsel stillere sahip öğrencilerin kuvvet ve hareket konularındaki başarıları ile başarıyı ölçmek için kullanılan testlerin içeriği ve formatı arasındaki ilişkinin araştırılması. (Yüksek lisans tezi). Retrieved From https://tez.yok.gov.tr.
  • Allport, G. W. (1937). Personality: a psychological interpretation. Holt.
  • Alptekin, C., & Atakan, S. (1990). Field dependence-independence and hemisphericity as variables in L2 achievement. Interlanguage studies bulletin (Utrecht), 6(2), 135-149.
  • Amir, R., & Tamir, P. (1994). In-depth analysis of misconceptions as a basis for developing research-based remedial instruction: The case of photosynthesis. The American Biology Teacher, 56(2), 94-100.
  • Ari, E., & Bayram, H. (2011). Yapılandırmacı yaklaşım ve öğrenme stillerinin laboratuvar uygulamalarında başarı ve bilimsel süreç becerileri üzerine etkisi. İlköğretim Online, 10(1).
  • Artun, H., & Coştu, B. (2013). Effect of the 5E model on prospective teachers’ conceptual understanding of diffusion and osmosis: A mixed method approach. Journal of Science Education and Technology, 22(1), 1-10.
  • Ates, S., & Polat, M. (2005). Elektrik devreleri konusundaki kavram yanılgılarının giderilmesinde öğrenme evreleri metodunun etkisi. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 28(28).
  • Ates, S., & Karacam, S. (2005). Farklı ölçme tekniklerinin lise öğrencilerinin hareket ve hareket yasaları konularındaki kavramsal bilgi düzeyine etkisi. Bolu Abant İzzet Baysal Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 1(10), 1-17.
  • Ates, S., & Cataloglu, E. (2007). The effects of students' cognitive styles on conceptual understandings and problem‐solving skills in introductory mechanics. Research in Science & Technological Education, 25(2), 167-178.
  • Aydin, F. (2015). The relationship between pre-service science teachers’ cognitive styles and their cognitive structures about technology. Research in Science & Technological Education, 33(1), 88-110.
  • Aydin Ceran, S. (2018). The effects of 5e models supported life-based contexts on the conceptual understanding level and scientific process skills. (Doctoral dissertation). Gazi University, Ankara. Retrieved From https://tez.yok.gov.tr.
  • Aykutlu, I., & Sen, A. I. (2012). Üç asamali test, kavram haritasi ve analoji kullanilarak lise ögrencilerinin elektrik akimi konusundaki kavram yanilgilarinin belirlenmesi. Eğitim ve Bilim, 37(166), 275.
  • Bahar, M. (2001). Çoktan seçmeli testlere eleştirel bir yaklaşım ve alternatif metotlar. Kuram ve Uygulamada Eğitim Bilimleri Dergisi, 1(1), 23-38.
  • Bahar, M. (2003). The effect of instructional methods on the performance of the students having different cognitive styles. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, (24)24.
  • Balci, A. (2005). Sosyal bilimlerde araştırma: yöntem teknik ve ilkeler. Ankara: TDFO.
  • Bassey, S. W., Umoren, G., & Udida, L. A. (2007). Cognitive styles, secondary school students’ attitude and academic performance in chemistry in Akwa Ibom State-Nigeria. In Proceedings of epiSTEME 2-International Conference to Review Research in Science, Technology and Mathematics Education, India.
  • Bellocchi, A., King, D. T., & Ritchie, S. M. (2011). Assessing students in senior science: an analysis of questions in contextualised chemistry exams. Paper presented at the Proceedings of the 1st International Conference of STEM in Education. Retrieved from https://eprints.qut.edu.au/46065/
  • Benckert, S., & Pettersson, S. (2005). Conversation and context in physics education. Retrieved from https://gupea.ub.gu.se/handle/2077/18144.
  • Black, P., & Wiliam, D. (1998). Assessment and classroom learning. Assessment in Education: principles, policy & practice, 5(1), 7-74.
  • Brooks, J. G., & Brooks, M. G. (1999). In search of understanding: The case for constructivist classrooms. Virginia, ASCD.
  • Burkhalter, B. B., & Schaer, B. B. (1984-1985). The effect of cognitive style and cognitive learning in a non-traditional educational setting. Educational Research Quarterly, 9(4), 12–18.
  • Buyukozturk, S. (2012). Sosyal Bilimler için Veri Analizi El Kitabı: İstatistik, Araştırma Deseni-SPSS Uygulamaları ve Yorum (16. Baskı). Ankara: PegemA Yayıncılık.
  • Cañas, A. J., Novak, J. D., & González, F. M. (2006). Concept maps: theory, methodology, technology. In Proceedings of the second international conference on concept mapping. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.548.1580.
  • Candar, M. K. (2012). İlköğretim 7. sınıf öğrencilerinin bilişsel stillerinin karşılaştırılması.(Yüksek lisans tezi). Adnan Menderes Üniversitesi, Sosyal Bilimler Enstitüsü, Aydın.
  • Case, R. & Globerson, T. (1974). Field-independence and central computing space. Child Development, 45, 772-778.
  • Case, R. (1974). Structures and strictures, some functional limitations on the course of cognitive growth. Cognitive Psychology, (6), 544-574.
  • Cataloglu, E., & Ates, S. (2013). The effects of cognitive styles on naïve impetus theory application degrees of pre-service science teachers. International Journal of Science and Mathematics Education, 12(4), 699-719.
  • Celik, T. (2010). İlköğretim öğrencilerinin bilişsel stil ve öğrenme stillerinin farklı ölçme formatlarından aldıkları puanlara etkisi. Yüksek Lisans Tezi, Abant İzzet Baysal Üniversitesi Sosyal Bilimler Enstitüsü, Bolu.
  • Cepni, S. (2016). PISA VE TIMMS mantığını ve sorularını anlama: Pegem Akademi.
  • Cetinkaya, M., & Taş, E. (2016). Vücudumuzda sistemler ünitesine yönelik üç aşamalı kavram tanı testi geliştirilmesi. ODÜ Sosyal Bilimler Araştırmaları Dergisi (ODÜSOBİAD), 6(15), 317-330.
  • Chalip, L. (1979). Learning on the Group Embedded Figures Test. Perceptual and Motor Skills, 48(3, Pt 2), 1070. Retrieved from, https://doi.org/10.2466/pms.1979.48.3c.1070.
  • Chuang, Y. R. (1999). Teaching in a multimedia computer environment: A study of the effects of learning style, gender, and math achievement. Interactive Multimedia Electronic Journal of Computer-Enhanced Learning, 1(1), 1999.
  • Chun‐Yen Chang, Ting‐Kuang Yeh., & James P. Barufaldi (2010). The positive and negative effects of science concept tests on student conceptual understanding. International Journal of Science Education, 32(2), 265-282, DOI: 10.1080/09500690802650055.
  • Cohen, L., Manion, L., & Morrison, K. (2002). Research methods in education. 5th Edition, Routledge.
  • Conradty, C., & Bogner, F. X. (2012). Knowledge presented in concept maps: Correlations with conventional cognitive knowledge tests. Educational Studies, 38(3), 341-354.
  • Crow, L. W., & Piper, M. K. (1983). A study of the perceptual orientation of community college students and their attitudes toward science as they relate to science achievement. Journal of research in science teaching, 20(6), 537-541.
  • Driver, R. (1983). Pupil as scientist. (UK). McGraw-Hill Education.
  • Garlick, J. (2014). Why everyone needs to understand science. World Economic Forum Agenda.https://www.weforum.org/agenda/2014/12/why-everyone-needs-to-understand-science/
  • Gobert, J. D., & Clement, J. J. (1999). Effects of student-generated diagrams versus student generated summaries on conceptual understanding of causal and dynamic knowledge in plate tectonics. Journal of research in science teaching, 36(1), 39-53.
  • Graff, M. (2005). Differences in concept mapping, hypertext architecture, and the analyst–intuition dimension of cognitive style. Educational Psychology, 25(4), 409-422.
  • Gunstone, R., & Watts, M. (1985). Force and motion. Children’s ideas in science, 85-104.
  • Hartmeyer, R., Stevenson, M. P., & Bentsen, P. (2018). A systematic review of concept mapping-based formative assessment processes in primary and secondary science education. Assessment in Education: Principles, Policy & Practice, 25(6), 598-619.
  • Haslam, F., & Treagust, D. F. (1987). Diagnosing secondary students' misconceptions of photosynthesis and respiration in plants using a two-tier multiple-choice instrument. Journal of biological education, 21(3), 203-211.
  • Hay, D. B., & I. M. Kinchin. 2006. “Using Concept Maps to Reveal Conceptual Typologies.” Education & Training 48 (2/3): 127–142.
  • Heller, P., & Hollabaugh, M. (1992). Teaching problem solving through cooperative grouping. Part 2: Designing problems and structuring groups. American journal of physics, 60(7), 637-644.
  • Horzum, M. B., & Alper, A. (2006). The effect of case-based learning model, cognitive style and gender to the student achievement in science courses. Ankara University Journal of Faculty of Educational Sciences, 39(2), 151-175.
  • Ingeç, Ş. K. (2009). Analyzing concept maps as an assessment tool in teaching physics and comparison with the achievement tests. International Journal of Science Education, 31(14), 1897-1915.
  • Jantan, D. H. (2014). Relationship between students’ cognitive style (field-dependent and field–independent cognitive styles) with their mathematic achievement in primary school.International Journal of Humanities Social Sciences and Education (IJHSSE), 1, 88-93.
  • Jablokow, K. W., DeFranco, J. F., Richmond, S. S., Piovoso, M. J., & Bilén, S. G. (2015). Cognitive style and concept mapping performance. Journal of Engineering Education, 104(3), 303-325.
  • Jonassen, D. H., & Grabowski, B. L. (2012). Handbook of individual differences, learning, and instruction. Routledge.
  • Wang, S. R., & Jonassen, D. H. (1993, April). Investigating the effects of individual differences on performance in cognitive flexibility hypertexts. In Paper at Annual Meeting American Educational Research Association, Atlanta Ga.
  • Kalman, C. S. (2011). Enhancing students’ conceptual understanding by engaging science text with reflective writing as a hermeneutical circle. Science & Education, 20(2), 159-172.
  • Kang, S. W., & Woo, J. O. (1995). A study on the cognitive levels and the science process skills based on the cognitive styles. Journal of The Korean Association for Science Education, 15(4), 404-416.
  • Karacam, S. (2005). Farklı bilişsel stillerdeki lise öğrencilerinin hareket ve hareket yasaları konularındaki kavramsal anlama düzeyleri ile ölçme teknikleri arasındaki ilişki. (Yüksek Lisans Tezi) İzzet Baysal Üniversitesi Eğitim Bilimleri Enstitüsü, Bolu.
  • Karacam, S., & Ates, S. (2010). Ölçme tekniğinin farklı bilişsel stillerdeki öğrencilerin hareket konusundaki kavramsal bilgi düzeylerine etkisi. Abant İzzet Baysal Üniversitesi Eğitim Fakültesi Dergisi, 10(1).
  • Kaya, O. N. (2003). Eğitimde alternatif bir değerlendirme yolu: Kavram haritaları. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 25(25).
  • Kayacan, K., & Selvi, M. (2017). Öz Düzenleme Faaliyetleri İle Zenginleştirilmiş Araştırma-Sorgulamaya Dayalı Öğretim Stratejisinin Kavramsal Anlamaya ve Akademik Öz Yeterliğe Etkisi. Kastamonu Eğitim Dergisi, 25(5), 1771-1786.
  • Kavanagh, C., & Sneider, C. (2007). Learning about gravity I. Free fall: A guide for teachers and curriculum developers. Astronomy Education Review, 5(2), 21-52.
  • Kılıç, D., & Sağlam, N. (2009). Development of a Two-Tier Diagnostic Test to Determine Students' Understanding of Concepts in Genetics. Eurasian Journal of Educational Research (EJER) (36).
  • Knappenberger, N. (1998). The effects of the interaction between cognitive style and instructional strategy on the educational outcomes for a science exhibit (pp. 1-175). University of Virginia.
  • Konicek-Moran, R., & Keeley, P. (2015). Teaching for conceptual understanding in science. Arlington: NSTA Press, National Science Teachers Association.
  • Lee, Y. S., Jang, Y., & Kang, M. (2015). Validity and responsiveness of concept map assessment scores in physical education. Physical Educator, 72(2), 206-223.
  • Liu, X., & Hinchey, M. (1996). The internal consistency of a concept mapping scoring scheme and its effect on prediction validity. International journal of science education, 18(8), 921-937.
  • Lubben, F., Campbell, B., & Dlamini, B. (1996). Contextualizing science teaching in Swaziland: some student reactions. International Journal of Science Education, 18(3), 311-320.
  • Markham, K. M., Mintzes, J. J., & Jones, M. G. (1994). The concept map as a research and evaluation tool: Further evidence of validity. Journal of research in science teaching, 31(1), 91-101.
  • Mefoh, P. C., Nwoke, M. B., Chukwuorji, J. C., & Chijioke, A. O. (2017). Effect of cognitive style and gender on adolescents’ problem-solving ability. Thinking Skills and Creativity, 25, 47-52.
  • Messick, S. (1982). Cognitive styles in educational practice. ETS Research Report Series, 1982(1), 5-34. https://doi.org/10.1002/j.2333-8504.1982.tb01299.x.
  • Mousavi, S., Radmehr, F., & Alamolhodaei, H. (2012). The role of mathematical homework and prior knowledge on the relationship between students' mathematical performance, cognitive style and working memory capacity. Electronic Journal of Research in Educational Psychology, 10(3), 1223-1248.
  • (MoNE) Republic of Turkey Ministry of National Education (2018). Science Education Curriculum. Retrieved from: http://mufredat.meb.gov.tr/Dosyalar/201812312311937FEN%20B%C4%B0L%C4%B0MLER%C4%B0%20%C3%96%C4%9ERET%C4%B0M%20PROGRAMI2018.pdf.
  • McClure, J. R., Sonak, B., & Suen, H. K. (1999). Concept map assessment of classroom learning: Reliability, validity, and logistical practicality. Journal of research in science teaching, 36(4), 475-492.
  • Nicolaou, A. A., & Xistouri, X. (2011). Field dependence/independence cognitive style and problem posing: an investigation with sixth grade students. Educational Psychology, 31(5), 611-627.
  • Novak, J. D., Bob Gowin, D., & Johansen, G. T. (1983). The use of concept mapping and knowledge vee mapping with junior high school science students. Science education, 67(5), 625-645.
  • Novak, J. D. (1990). Concept mapping: A useful tool for science education. Journal of research in science teaching, 27(10), 937-949.
  • Novak, J. D., & Cañas, A. J. (2006). The origins of the concept mapping tool and the continuing evolution of the tool. Information visualization, 5(3), 175-184.
  • OECD (2019). PISA 2018 Results (Volume I). What students know and can do. https://www.oecd-ilibrary.org/education/pisa-2018-results-volume-i_5f07c754-en.
  • Ogunyemi, E. L. (1973). Cognitive styles and student science achievement in Nigeria. The Journal of Experimental Education, 42(1), 59-63.
  • Oltman, P.K, Raskin, E. & Witkin, H.A. (1971). Group embedded figures test booklet. All rights reserved 2003. Published by Mind Garden, Inc.
  • Onyekuru, B. U. (2015). Field Dependence-Field Independence Cognitive Style, Gender, Career Choice and Academic Achievement of Secondary School Students in Emohua Local Government Area of Rivers State. Journal of Education and Practice, 6(10), 76-85.
  • Ozarslan, M., & Bilgin, İ. (2016). Öğrencilerin alan bağimli/bağimsiz bilişsel stillerinin ve bilimsel düşünme yeteneklerinin maddenin doğasi kavramlarini anlamalarina ve fen dersine yönelik tutumlarina etkisi. Mustafa Kemal Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 13(33), 94-110.
  • Ozbayrak, Ö., & Kartal, M. (2012). Ortaöğretim 9. sinif kimya dersi" bileşikler" ünitesi ile ilgili kavram yanilgilarinin iki aşamali kavramsal anlama testi ile tayini. Buca Faculty of Education Journal (32).
  • Park, J., & Lee, L. (2004). Analyzing cognitive or non‐cognitive factors involved in the process of physics problem‐solving in an everyday context. International Journal of Science Education, 26(13), 1577-1595.
  • Prayekti, M. (2015). The influence of cooperative learning type stad vs expository and cognitive style on learning of comprehension physics concept in among students at tenth grade senior high school in east jakarta, indonesia. Pinnacle Educational Research an Education, 3(3), 1-9.
  • Putranta, H., & Supahar, S.(2019). Development of physics-tier tests (PysTT) to measure students' conceptual understanding and creative thinking skills: a qualitative synthesis. Journal for the Education of Gifted Young Scientists, 7(3), 747-775.
  • Roberge, J. J., & Flexer, B. K. (1983). Cognitive style, operativity, and mathematics achievement. Journal for research in Mathematics Education, 344-353.
  • Roth, K.J. (1990). Developing meaningful conceptual understanding in science. In B.F.Jones & L. Idol (Eds.), Dimensions of thinking and cognitive instruction. Hillsdale, NJ: Erl-baum.
  • Ruiz-Primo, M. A. (2004). Examining concept maps as an assessment tool. Paper Presented Concept Maps: Theory, Methodology, Technology Proc. of the First Int. Conference on Concept Mapping A. J. Cañas, J. D. Novak, F. M. González, Eds. Pamplona, Spain.
  • Ruiz-Primo, M. A., Schultz, S. E., Li, M., & Shavelson, R. J. (2001). Comparison of the reliability and validity of scores from two concept-mapping techniques. Journal of research in science teaching, 38(2), 260-278.
  • Ruiz-Primo, M. A., Schultz, S. E., & Shavelson, R. J. (1997a). On the validity of concept map-base assessment interpretations: An experiment testing the assumption of hierarchical concept maps in science.CSE Technical Report 436. CRESST. Los Angeles.
  • Ruiz-Primo, M. A., Schultz, S. E., & Shavelson, R. J. (1997b). Concept map-based assessment in science: Two exploratory studies. CSE Technical Report 455.Center for Research on Evaluation, Standards, and Student Testing, Graduate School of Education & Information Studies, University of California, Los Angeles.
  • Ruiz‐Primo, M. A., & Shavelson, R. J. (1996). Problems and issues in the use of concept maps in science assessment. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 33(6), 569-600.
  • Rye, J. A., & Rubba, P. A. (2002). Scoring concept maps: An expert map‐based scheme weighted for relationships. School Science and Mathematics, 102(1), 33-44.
  • Sahin, Ç., & Çepni, S. (2011). Yüzme-Batma, Kaldırma Kuvveti ve Basınç. Kavramları ile İlgili İki Aşamalı Kavramsal Yapılardaki Farklılaşmayı Belirleme Testi Geliştirilmesi. Journal of Turkish Science Education (TUSED), 8(1), 79-110.
  • Sari, M., Altiparmak, M., & Ates, S. (2013). Effects of test structure on mechanıcs achıevement of students wıth dıfferent cognıtıve styles. Hacettepe Unıversıtesı Egıtım Fakultesı Dergısı-Hacettepe Unıversıty Journal of Educatıon, 28(1), 334-344.
  • Saracho, O. N. (1997). Teachers' and Students' Cognitive Styles in Early Childhood Education. Bergin & Garvey, 88 Post Road West, Box 5007, Westport, CT 06881.
  • Sen, S., Yilmaz, A., & Geban, Ö. (2018). Üç aşamalı elektrokimya kavram testinin geliştirilmesi. Karaelmas Science and Engineering Journal, 8(1), 324-330.
  • Scardamalia, M. (1977). Information processing capacity and the problem of Horizontal Decalage: A demonstration using combinatorial reasoning tasks. Child Development, 48(1), 28-37.
  • Scott Jr, N. C., & Sigel, I. E. (1965). Effects of inquıry traınıng in physıcal scıence on creatıvıty and cognıtıve styles of elementary school chıldren. Cooperative Research Project Report, U.S. Office of Education, 1965.
  • Scott, P., Asoko, H., & Leach, J. (2007). Students conceptions and Conceptual Learning in Science (pp. 31-56). Abell, S. y Lederman, N. Handbook of Research on Science Education. New Jersey: Lawrence Elrbaum Associates Publishers.
  • Sharma, H. L. (2018). A Correlation Study among Cognitive Styles, Achievement Motivation and Academic Achievement using Multimedia and Traditional Instructional Strategies. International Journal of Research in Social Sciences, 8(5), 342-356.
  • Sinan, O. (2007). Fen bilgisi öğretmen adaylarının enzimlerle ilgili kavramsal anlama düzeyleri. Necatibey Eğitim Fakültesi Elektronik Fen ve Matematik Eğitimi Dergisi, 1(1).
  • Stamovlasis, D., Tsitsipis, G., & Papageorgiou, G. (2009). The effect of logical thinking and two cognitive styles on understanding the structure of matter: An analysis with the random walk method. Chemistry Education Research and Practice, 11(3), 173181.
  • Stoyanov, S., Jablokow, K., Rosas, S. R., Wopereis, I. G., & Kirschner, P. A. (2017). Concept mapping—An effective method for identifying diversity and congruity in cognitive style. Evaluation and program planning, (60), 238-244.
  • Sternberg, R. J. (1997). Cognitive conceptions of expertise. In P. J. Feltovich, K. M. Ford, & R. R. Hoffman (Eds.), Expertise in context: Human and machine (pp. 149-162). Menlo Park, CA, US: American Association for Artificial Intelligence; Cambridge, MA, US: The MIT Press.
  • Sternberg, R. J., & Grigorenko, E. L. (1997). Are cognitive styles still in style? American Psychologist, 52(7), 700–712. https://doi.org/10.1037/0003-066X.52.7.700.
  • Taber, K. (2002). Chemical misconceptions: prevention, diagnosis and cure (Vol. 1): Royal Society of Chemistry, London.
  • Tekbiyik, A., & Akdeniz, A. R. (2010). Bağlam temelli ve geleneksel fizik problemlerinin karşılaştırılması üzerine bir inceleme. Necatibey Eğitim Fakültesi Elektronik Fen ve Matematik Eğitimi Dergisi, 4(1), 123-140.
  • Tekbiyik, A., & Akdeniz, A. R. (2008). İlköğretim fen ve teknoloji dersi öğretim programını kabullenmeye ve uygulamaya yönelik öğretmen görüşleri. Necatibey Eğitim Fakültesi Elektronik Fen ve Matematik Eğitimi Dergisi, 2(2), 23-27.
  • Tinajero, C., & Paramo, M. F. (1998). Field dependence-independence cognitive style and academic achievement: A review of research and theory. European Journal of Psychology of Education, 13(2), 227-251.
  • Thompson, B., Pitts, M. M., & Gipe, J. P. (1983). Use of the Group Embedded Figures Test with children. Perceptual and motor skills, 57(1), 199-203. Treagust, D. F., & Duit, R. (2008). Conceptual change: A discussion of theoretical, methodological and practical challenges for science education. Cultural Studies of Science Education, 3(2), 297-328.
  • Tokiz, A. (2013). İlköğretim 6. 7. ve 8. sınıf öğrencilerinin kuvvet ve hareket konusundaki kavramsal anlama düzeylerinin kavram karikatürleri, kavram haritası, çizimler ve görüşmeler kullanılarak değerlendirmesi. (Master thesis). Celal Bayar Üniversitesi, Manisa.
  • Unlu, P., Ingeç, S. K., & Tasar, M. F. (2006). Öğretmen adaylarının momentum ve impuls kavramlarına ilişkin bilgi yapılarının kavram haritaları yöntemi ile araştırılması. Eğitim ve Bilim, 31(139), 70-79.
  • Yagbasan, R., & Gulcicek, C. (2003). Fen öğretiminde kavram yanılgılarinın karakteristiklerinin tanımlanmasi. Pamukkale Üniversitesi Eğitim Fakültesi Dergisi, 13(13), 102-120.
  • Yin, Y., Tomita, M. K., & Shavelson, R. J. (2014). Using formal embedded formative assessments aligned with a short-term learning progression to promote conceptual change and achievement in science. International Journal of Science Education, 36(4), 531-552.
  • Yin, Y., Vanides, J., Ruiz‐Primo, M. A., Ayala, C. C., & Shavelson, R. J. (2005). Comparison of two concept‐mapping techniques: Implications for scoring, interpretation, and use. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 42(2), 166-184.
  • Yorek, N. (2007). Öğrenci çizimleri yoluyla 9 ve 11. sınıf öğrencilerinin hücre konusunda kavramsal anlama düzeylerinin belirlenmesi. Dokuz Eylül Üniversitesi Buca Eğitim Fakültesi Dergisi, (22).
  • Wild, T. A., Hilson, M. P., & Hobson, S. M. (2013). The conceptual understanding of sound by students with visual impairments. Journal of Visual Impairment & Blindness, 107(2), 107-116.
  • Witkin, H. A., & Goodenough, D. (1981). Cognitive styles essence and origins: Field dependence and field independence psychological issues: New York: International University Press.
  • Witkin, H. A., Oltman, P. K., Raskin, E., & Karp, S. A. (1971). Manual for embedded figures test, children’s embedded figures test, and group embedded figures test. Palo Alto, Calif.: Consulting Psychologists Press, Inc.
  • Witkin, H. A., Moore, C. A., Goodenough, D. R., & Cox, P. W. (1977). Field-dependent and field-independent cognitive styles and their educational implications. Review of educational research, 47(1), 1-64.
  • Witkin, H. A. (1977). Cognitive styles in personal and cultural adaptation: Clark University Press.
  • World Economic Forum (WEF). (2020). Schools of the Future: Defining New Models of Education for the Fourth Industrial Revolution. World Economic Forum 91-93 route de la Capite CH-1223 Cologny/Geneva Switzerland. Retrieved from: https://www.weforum.org/reports/schools-of-the-future-defining-new-models-of-education-for-the-fourth-industrial-revolution.
  • Ziane, J. (1996). The application of information processing theory to the learning of physics. Doctoral Dissertation, University of Glasgow, Scotland.

Conceptual Understanding Levels of Students with Different Cognitive Styles: An Evaluation in Terms of Different Measurement Techniques

Yıl 2020, Cilt: 20 Sayı: 88, 149 - 178, 20.07.2020

Öz

Purpose: This study aimed to determine the conceptual understanding (The Unit of Force) levels of seventh-grade students with different cognitive styles with different measurement techniques and to observe how the conceptual understanding levels measured by different measurement techniques are affected by their cognitive styles.

Research Method: The sample of the study, which wasa causal-comparative study, consisted of 80 seventh-grade students in a public school in Ankara. To determine the field-dependent/field--independent cognitive style differences of the students, the Group Embedded Figures Test was used. To determine students’ conceptual understanding levels two different measurement techniques were used together. The first of these was the Life Based Concept Test. The test consisted of multiple-choice questions using real-life contexts that the student was familiar with in everyday life. Force Concept Map was anothermeasurement technique used to determine students' conceptual understanding. The data obtained were analyzed with MANOVA, one-way ANOVA and t-tests.

Findings: The findings of this research show that there was a significant difference concerning conceptual understanding levels measured by Life Based Concept Test and Force Concept Map in favor of students with field-independent cognitive style. The results obtained in this context revealed that the conceptual understanding levels measured by different measurement techniques in the unit of force differ according to cognitive styles of the students.


Implications for Research and Practice:
This study points out that cognitive style differences are an effective factor in student success. This difference in student achievement shows that measurement techniques may lead to a disadvantage/advantage for the student. Therefore, it is recommended to review the studies in which the conceptual understanding is measured by uniform tests in the literature. In addition, researchers are recommended to use multiple measurement techniques that consider students' individual differences to obtain more valid results.

Kaynakça

  • Abayomi, B. I. (1989). The effects of concept mapping and cognitive style on science achievement. (Unpublished doctoral dissertation). Georgia State University, Collegeo Of Education. Retrieved from https://www.elibrary.ru/item.asp?id=7549483.
  • Ahmed, A., & Pollitt, A. (2007). Improving the quality of contextualized questions: An experimental investigation of focus. Assessment in Education, 14(2), 201-232.
  • Al-Naeme, F. F. A. (1991). The influence of various learning styles on practical problemsolving in chemistry in Scottish secondary schools. (Doctoral dissertation). University of Glamorgan. Retrieved from http://theses.gla.ac.uk/78304/.
  • Alamolhodaei, H. (1996). A study in higher education calculus and students' learning styles. (Doctoral dissertation). University of Glasgow. Retrieved from http://theses.gla.ac.uk/1259/
  • Altiparmak, M. (2009). Alan bağımlı ve alan bağımsız bilişsel stillere sahip öğrencilerin kuvvet ve hareket konularındaki başarıları ile başarıyı ölçmek için kullanılan testlerin içeriği ve formatı arasındaki ilişkinin araştırılması. (Yüksek lisans tezi). Retrieved From https://tez.yok.gov.tr.
  • Allport, G. W. (1937). Personality: a psychological interpretation. Holt.
  • Alptekin, C., & Atakan, S. (1990). Field dependence-independence and hemisphericity as variables in L2 achievement. Interlanguage studies bulletin (Utrecht), 6(2), 135-149.
  • Amir, R., & Tamir, P. (1994). In-depth analysis of misconceptions as a basis for developing research-based remedial instruction: The case of photosynthesis. The American Biology Teacher, 56(2), 94-100.
  • Ari, E., & Bayram, H. (2011). Yapılandırmacı yaklaşım ve öğrenme stillerinin laboratuvar uygulamalarında başarı ve bilimsel süreç becerileri üzerine etkisi. İlköğretim Online, 10(1).
  • Artun, H., & Coştu, B. (2013). Effect of the 5E model on prospective teachers’ conceptual understanding of diffusion and osmosis: A mixed method approach. Journal of Science Education and Technology, 22(1), 1-10.
  • Ates, S., & Polat, M. (2005). Elektrik devreleri konusundaki kavram yanılgılarının giderilmesinde öğrenme evreleri metodunun etkisi. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 28(28).
  • Ates, S., & Karacam, S. (2005). Farklı ölçme tekniklerinin lise öğrencilerinin hareket ve hareket yasaları konularındaki kavramsal bilgi düzeyine etkisi. Bolu Abant İzzet Baysal Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 1(10), 1-17.
  • Ates, S., & Cataloglu, E. (2007). The effects of students' cognitive styles on conceptual understandings and problem‐solving skills in introductory mechanics. Research in Science & Technological Education, 25(2), 167-178.
  • Aydin, F. (2015). The relationship between pre-service science teachers’ cognitive styles and their cognitive structures about technology. Research in Science & Technological Education, 33(1), 88-110.
  • Aydin Ceran, S. (2018). The effects of 5e models supported life-based contexts on the conceptual understanding level and scientific process skills. (Doctoral dissertation). Gazi University, Ankara. Retrieved From https://tez.yok.gov.tr.
  • Aykutlu, I., & Sen, A. I. (2012). Üç asamali test, kavram haritasi ve analoji kullanilarak lise ögrencilerinin elektrik akimi konusundaki kavram yanilgilarinin belirlenmesi. Eğitim ve Bilim, 37(166), 275.
  • Bahar, M. (2001). Çoktan seçmeli testlere eleştirel bir yaklaşım ve alternatif metotlar. Kuram ve Uygulamada Eğitim Bilimleri Dergisi, 1(1), 23-38.
  • Bahar, M. (2003). The effect of instructional methods on the performance of the students having different cognitive styles. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, (24)24.
  • Balci, A. (2005). Sosyal bilimlerde araştırma: yöntem teknik ve ilkeler. Ankara: TDFO.
  • Bassey, S. W., Umoren, G., & Udida, L. A. (2007). Cognitive styles, secondary school students’ attitude and academic performance in chemistry in Akwa Ibom State-Nigeria. In Proceedings of epiSTEME 2-International Conference to Review Research in Science, Technology and Mathematics Education, India.
  • Bellocchi, A., King, D. T., & Ritchie, S. M. (2011). Assessing students in senior science: an analysis of questions in contextualised chemistry exams. Paper presented at the Proceedings of the 1st International Conference of STEM in Education. Retrieved from https://eprints.qut.edu.au/46065/
  • Benckert, S., & Pettersson, S. (2005). Conversation and context in physics education. Retrieved from https://gupea.ub.gu.se/handle/2077/18144.
  • Black, P., & Wiliam, D. (1998). Assessment and classroom learning. Assessment in Education: principles, policy & practice, 5(1), 7-74.
  • Brooks, J. G., & Brooks, M. G. (1999). In search of understanding: The case for constructivist classrooms. Virginia, ASCD.
  • Burkhalter, B. B., & Schaer, B. B. (1984-1985). The effect of cognitive style and cognitive learning in a non-traditional educational setting. Educational Research Quarterly, 9(4), 12–18.
  • Buyukozturk, S. (2012). Sosyal Bilimler için Veri Analizi El Kitabı: İstatistik, Araştırma Deseni-SPSS Uygulamaları ve Yorum (16. Baskı). Ankara: PegemA Yayıncılık.
  • Cañas, A. J., Novak, J. D., & González, F. M. (2006). Concept maps: theory, methodology, technology. In Proceedings of the second international conference on concept mapping. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.548.1580.
  • Candar, M. K. (2012). İlköğretim 7. sınıf öğrencilerinin bilişsel stillerinin karşılaştırılması.(Yüksek lisans tezi). Adnan Menderes Üniversitesi, Sosyal Bilimler Enstitüsü, Aydın.
  • Case, R. & Globerson, T. (1974). Field-independence and central computing space. Child Development, 45, 772-778.
  • Case, R. (1974). Structures and strictures, some functional limitations on the course of cognitive growth. Cognitive Psychology, (6), 544-574.
  • Cataloglu, E., & Ates, S. (2013). The effects of cognitive styles on naïve impetus theory application degrees of pre-service science teachers. International Journal of Science and Mathematics Education, 12(4), 699-719.
  • Celik, T. (2010). İlköğretim öğrencilerinin bilişsel stil ve öğrenme stillerinin farklı ölçme formatlarından aldıkları puanlara etkisi. Yüksek Lisans Tezi, Abant İzzet Baysal Üniversitesi Sosyal Bilimler Enstitüsü, Bolu.
  • Cepni, S. (2016). PISA VE TIMMS mantığını ve sorularını anlama: Pegem Akademi.
  • Cetinkaya, M., & Taş, E. (2016). Vücudumuzda sistemler ünitesine yönelik üç aşamalı kavram tanı testi geliştirilmesi. ODÜ Sosyal Bilimler Araştırmaları Dergisi (ODÜSOBİAD), 6(15), 317-330.
  • Chalip, L. (1979). Learning on the Group Embedded Figures Test. Perceptual and Motor Skills, 48(3, Pt 2), 1070. Retrieved from, https://doi.org/10.2466/pms.1979.48.3c.1070.
  • Chuang, Y. R. (1999). Teaching in a multimedia computer environment: A study of the effects of learning style, gender, and math achievement. Interactive Multimedia Electronic Journal of Computer-Enhanced Learning, 1(1), 1999.
  • Chun‐Yen Chang, Ting‐Kuang Yeh., & James P. Barufaldi (2010). The positive and negative effects of science concept tests on student conceptual understanding. International Journal of Science Education, 32(2), 265-282, DOI: 10.1080/09500690802650055.
  • Cohen, L., Manion, L., & Morrison, K. (2002). Research methods in education. 5th Edition, Routledge.
  • Conradty, C., & Bogner, F. X. (2012). Knowledge presented in concept maps: Correlations with conventional cognitive knowledge tests. Educational Studies, 38(3), 341-354.
  • Crow, L. W., & Piper, M. K. (1983). A study of the perceptual orientation of community college students and their attitudes toward science as they relate to science achievement. Journal of research in science teaching, 20(6), 537-541.
  • Driver, R. (1983). Pupil as scientist. (UK). McGraw-Hill Education.
  • Garlick, J. (2014). Why everyone needs to understand science. World Economic Forum Agenda.https://www.weforum.org/agenda/2014/12/why-everyone-needs-to-understand-science/
  • Gobert, J. D., & Clement, J. J. (1999). Effects of student-generated diagrams versus student generated summaries on conceptual understanding of causal and dynamic knowledge in plate tectonics. Journal of research in science teaching, 36(1), 39-53.
  • Graff, M. (2005). Differences in concept mapping, hypertext architecture, and the analyst–intuition dimension of cognitive style. Educational Psychology, 25(4), 409-422.
  • Gunstone, R., & Watts, M. (1985). Force and motion. Children’s ideas in science, 85-104.
  • Hartmeyer, R., Stevenson, M. P., & Bentsen, P. (2018). A systematic review of concept mapping-based formative assessment processes in primary and secondary science education. Assessment in Education: Principles, Policy & Practice, 25(6), 598-619.
  • Haslam, F., & Treagust, D. F. (1987). Diagnosing secondary students' misconceptions of photosynthesis and respiration in plants using a two-tier multiple-choice instrument. Journal of biological education, 21(3), 203-211.
  • Hay, D. B., & I. M. Kinchin. 2006. “Using Concept Maps to Reveal Conceptual Typologies.” Education & Training 48 (2/3): 127–142.
  • Heller, P., & Hollabaugh, M. (1992). Teaching problem solving through cooperative grouping. Part 2: Designing problems and structuring groups. American journal of physics, 60(7), 637-644.
  • Horzum, M. B., & Alper, A. (2006). The effect of case-based learning model, cognitive style and gender to the student achievement in science courses. Ankara University Journal of Faculty of Educational Sciences, 39(2), 151-175.
  • Ingeç, Ş. K. (2009). Analyzing concept maps as an assessment tool in teaching physics and comparison with the achievement tests. International Journal of Science Education, 31(14), 1897-1915.
  • Jantan, D. H. (2014). Relationship between students’ cognitive style (field-dependent and field–independent cognitive styles) with their mathematic achievement in primary school.International Journal of Humanities Social Sciences and Education (IJHSSE), 1, 88-93.
  • Jablokow, K. W., DeFranco, J. F., Richmond, S. S., Piovoso, M. J., & Bilén, S. G. (2015). Cognitive style and concept mapping performance. Journal of Engineering Education, 104(3), 303-325.
  • Jonassen, D. H., & Grabowski, B. L. (2012). Handbook of individual differences, learning, and instruction. Routledge.
  • Wang, S. R., & Jonassen, D. H. (1993, April). Investigating the effects of individual differences on performance in cognitive flexibility hypertexts. In Paper at Annual Meeting American Educational Research Association, Atlanta Ga.
  • Kalman, C. S. (2011). Enhancing students’ conceptual understanding by engaging science text with reflective writing as a hermeneutical circle. Science & Education, 20(2), 159-172.
  • Kang, S. W., & Woo, J. O. (1995). A study on the cognitive levels and the science process skills based on the cognitive styles. Journal of The Korean Association for Science Education, 15(4), 404-416.
  • Karacam, S. (2005). Farklı bilişsel stillerdeki lise öğrencilerinin hareket ve hareket yasaları konularındaki kavramsal anlama düzeyleri ile ölçme teknikleri arasındaki ilişki. (Yüksek Lisans Tezi) İzzet Baysal Üniversitesi Eğitim Bilimleri Enstitüsü, Bolu.
  • Karacam, S., & Ates, S. (2010). Ölçme tekniğinin farklı bilişsel stillerdeki öğrencilerin hareket konusundaki kavramsal bilgi düzeylerine etkisi. Abant İzzet Baysal Üniversitesi Eğitim Fakültesi Dergisi, 10(1).
  • Kaya, O. N. (2003). Eğitimde alternatif bir değerlendirme yolu: Kavram haritaları. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 25(25).
  • Kayacan, K., & Selvi, M. (2017). Öz Düzenleme Faaliyetleri İle Zenginleştirilmiş Araştırma-Sorgulamaya Dayalı Öğretim Stratejisinin Kavramsal Anlamaya ve Akademik Öz Yeterliğe Etkisi. Kastamonu Eğitim Dergisi, 25(5), 1771-1786.
  • Kavanagh, C., & Sneider, C. (2007). Learning about gravity I. Free fall: A guide for teachers and curriculum developers. Astronomy Education Review, 5(2), 21-52.
  • Kılıç, D., & Sağlam, N. (2009). Development of a Two-Tier Diagnostic Test to Determine Students' Understanding of Concepts in Genetics. Eurasian Journal of Educational Research (EJER) (36).
  • Knappenberger, N. (1998). The effects of the interaction between cognitive style and instructional strategy on the educational outcomes for a science exhibit (pp. 1-175). University of Virginia.
  • Konicek-Moran, R., & Keeley, P. (2015). Teaching for conceptual understanding in science. Arlington: NSTA Press, National Science Teachers Association.
  • Lee, Y. S., Jang, Y., & Kang, M. (2015). Validity and responsiveness of concept map assessment scores in physical education. Physical Educator, 72(2), 206-223.
  • Liu, X., & Hinchey, M. (1996). The internal consistency of a concept mapping scoring scheme and its effect on prediction validity. International journal of science education, 18(8), 921-937.
  • Lubben, F., Campbell, B., & Dlamini, B. (1996). Contextualizing science teaching in Swaziland: some student reactions. International Journal of Science Education, 18(3), 311-320.
  • Markham, K. M., Mintzes, J. J., & Jones, M. G. (1994). The concept map as a research and evaluation tool: Further evidence of validity. Journal of research in science teaching, 31(1), 91-101.
  • Mefoh, P. C., Nwoke, M. B., Chukwuorji, J. C., & Chijioke, A. O. (2017). Effect of cognitive style and gender on adolescents’ problem-solving ability. Thinking Skills and Creativity, 25, 47-52.
  • Messick, S. (1982). Cognitive styles in educational practice. ETS Research Report Series, 1982(1), 5-34. https://doi.org/10.1002/j.2333-8504.1982.tb01299.x.
  • Mousavi, S., Radmehr, F., & Alamolhodaei, H. (2012). The role of mathematical homework and prior knowledge on the relationship between students' mathematical performance, cognitive style and working memory capacity. Electronic Journal of Research in Educational Psychology, 10(3), 1223-1248.
  • (MoNE) Republic of Turkey Ministry of National Education (2018). Science Education Curriculum. Retrieved from: http://mufredat.meb.gov.tr/Dosyalar/201812312311937FEN%20B%C4%B0L%C4%B0MLER%C4%B0%20%C3%96%C4%9ERET%C4%B0M%20PROGRAMI2018.pdf.
  • McClure, J. R., Sonak, B., & Suen, H. K. (1999). Concept map assessment of classroom learning: Reliability, validity, and logistical practicality. Journal of research in science teaching, 36(4), 475-492.
  • Nicolaou, A. A., & Xistouri, X. (2011). Field dependence/independence cognitive style and problem posing: an investigation with sixth grade students. Educational Psychology, 31(5), 611-627.
  • Novak, J. D., Bob Gowin, D., & Johansen, G. T. (1983). The use of concept mapping and knowledge vee mapping with junior high school science students. Science education, 67(5), 625-645.
  • Novak, J. D. (1990). Concept mapping: A useful tool for science education. Journal of research in science teaching, 27(10), 937-949.
  • Novak, J. D., & Cañas, A. J. (2006). The origins of the concept mapping tool and the continuing evolution of the tool. Information visualization, 5(3), 175-184.
  • OECD (2019). PISA 2018 Results (Volume I). What students know and can do. https://www.oecd-ilibrary.org/education/pisa-2018-results-volume-i_5f07c754-en.
  • Ogunyemi, E. L. (1973). Cognitive styles and student science achievement in Nigeria. The Journal of Experimental Education, 42(1), 59-63.
  • Oltman, P.K, Raskin, E. & Witkin, H.A. (1971). Group embedded figures test booklet. All rights reserved 2003. Published by Mind Garden, Inc.
  • Onyekuru, B. U. (2015). Field Dependence-Field Independence Cognitive Style, Gender, Career Choice and Academic Achievement of Secondary School Students in Emohua Local Government Area of Rivers State. Journal of Education and Practice, 6(10), 76-85.
  • Ozarslan, M., & Bilgin, İ. (2016). Öğrencilerin alan bağimli/bağimsiz bilişsel stillerinin ve bilimsel düşünme yeteneklerinin maddenin doğasi kavramlarini anlamalarina ve fen dersine yönelik tutumlarina etkisi. Mustafa Kemal Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 13(33), 94-110.
  • Ozbayrak, Ö., & Kartal, M. (2012). Ortaöğretim 9. sinif kimya dersi" bileşikler" ünitesi ile ilgili kavram yanilgilarinin iki aşamali kavramsal anlama testi ile tayini. Buca Faculty of Education Journal (32).
  • Park, J., & Lee, L. (2004). Analyzing cognitive or non‐cognitive factors involved in the process of physics problem‐solving in an everyday context. International Journal of Science Education, 26(13), 1577-1595.
  • Prayekti, M. (2015). The influence of cooperative learning type stad vs expository and cognitive style on learning of comprehension physics concept in among students at tenth grade senior high school in east jakarta, indonesia. Pinnacle Educational Research an Education, 3(3), 1-9.
  • Putranta, H., & Supahar, S.(2019). Development of physics-tier tests (PysTT) to measure students' conceptual understanding and creative thinking skills: a qualitative synthesis. Journal for the Education of Gifted Young Scientists, 7(3), 747-775.
  • Roberge, J. J., & Flexer, B. K. (1983). Cognitive style, operativity, and mathematics achievement. Journal for research in Mathematics Education, 344-353.
  • Roth, K.J. (1990). Developing meaningful conceptual understanding in science. In B.F.Jones & L. Idol (Eds.), Dimensions of thinking and cognitive instruction. Hillsdale, NJ: Erl-baum.
  • Ruiz-Primo, M. A. (2004). Examining concept maps as an assessment tool. Paper Presented Concept Maps: Theory, Methodology, Technology Proc. of the First Int. Conference on Concept Mapping A. J. Cañas, J. D. Novak, F. M. González, Eds. Pamplona, Spain.
  • Ruiz-Primo, M. A., Schultz, S. E., Li, M., & Shavelson, R. J. (2001). Comparison of the reliability and validity of scores from two concept-mapping techniques. Journal of research in science teaching, 38(2), 260-278.
  • Ruiz-Primo, M. A., Schultz, S. E., & Shavelson, R. J. (1997a). On the validity of concept map-base assessment interpretations: An experiment testing the assumption of hierarchical concept maps in science.CSE Technical Report 436. CRESST. Los Angeles.
  • Ruiz-Primo, M. A., Schultz, S. E., & Shavelson, R. J. (1997b). Concept map-based assessment in science: Two exploratory studies. CSE Technical Report 455.Center for Research on Evaluation, Standards, and Student Testing, Graduate School of Education & Information Studies, University of California, Los Angeles.
  • Ruiz‐Primo, M. A., & Shavelson, R. J. (1996). Problems and issues in the use of concept maps in science assessment. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 33(6), 569-600.
  • Rye, J. A., & Rubba, P. A. (2002). Scoring concept maps: An expert map‐based scheme weighted for relationships. School Science and Mathematics, 102(1), 33-44.
  • Sahin, Ç., & Çepni, S. (2011). Yüzme-Batma, Kaldırma Kuvveti ve Basınç. Kavramları ile İlgili İki Aşamalı Kavramsal Yapılardaki Farklılaşmayı Belirleme Testi Geliştirilmesi. Journal of Turkish Science Education (TUSED), 8(1), 79-110.
  • Sari, M., Altiparmak, M., & Ates, S. (2013). Effects of test structure on mechanıcs achıevement of students wıth dıfferent cognıtıve styles. Hacettepe Unıversıtesı Egıtım Fakultesı Dergısı-Hacettepe Unıversıty Journal of Educatıon, 28(1), 334-344.
  • Saracho, O. N. (1997). Teachers' and Students' Cognitive Styles in Early Childhood Education. Bergin & Garvey, 88 Post Road West, Box 5007, Westport, CT 06881.
  • Sen, S., Yilmaz, A., & Geban, Ö. (2018). Üç aşamalı elektrokimya kavram testinin geliştirilmesi. Karaelmas Science and Engineering Journal, 8(1), 324-330.
  • Scardamalia, M. (1977). Information processing capacity and the problem of Horizontal Decalage: A demonstration using combinatorial reasoning tasks. Child Development, 48(1), 28-37.
  • Scott Jr, N. C., & Sigel, I. E. (1965). Effects of inquıry traınıng in physıcal scıence on creatıvıty and cognıtıve styles of elementary school chıldren. Cooperative Research Project Report, U.S. Office of Education, 1965.
  • Scott, P., Asoko, H., & Leach, J. (2007). Students conceptions and Conceptual Learning in Science (pp. 31-56). Abell, S. y Lederman, N. Handbook of Research on Science Education. New Jersey: Lawrence Elrbaum Associates Publishers.
  • Sharma, H. L. (2018). A Correlation Study among Cognitive Styles, Achievement Motivation and Academic Achievement using Multimedia and Traditional Instructional Strategies. International Journal of Research in Social Sciences, 8(5), 342-356.
  • Sinan, O. (2007). Fen bilgisi öğretmen adaylarının enzimlerle ilgili kavramsal anlama düzeyleri. Necatibey Eğitim Fakültesi Elektronik Fen ve Matematik Eğitimi Dergisi, 1(1).
  • Stamovlasis, D., Tsitsipis, G., & Papageorgiou, G. (2009). The effect of logical thinking and two cognitive styles on understanding the structure of matter: An analysis with the random walk method. Chemistry Education Research and Practice, 11(3), 173181.
  • Stoyanov, S., Jablokow, K., Rosas, S. R., Wopereis, I. G., & Kirschner, P. A. (2017). Concept mapping—An effective method for identifying diversity and congruity in cognitive style. Evaluation and program planning, (60), 238-244.
  • Sternberg, R. J. (1997). Cognitive conceptions of expertise. In P. J. Feltovich, K. M. Ford, & R. R. Hoffman (Eds.), Expertise in context: Human and machine (pp. 149-162). Menlo Park, CA, US: American Association for Artificial Intelligence; Cambridge, MA, US: The MIT Press.
  • Sternberg, R. J., & Grigorenko, E. L. (1997). Are cognitive styles still in style? American Psychologist, 52(7), 700–712. https://doi.org/10.1037/0003-066X.52.7.700.
  • Taber, K. (2002). Chemical misconceptions: prevention, diagnosis and cure (Vol. 1): Royal Society of Chemistry, London.
  • Tekbiyik, A., & Akdeniz, A. R. (2010). Bağlam temelli ve geleneksel fizik problemlerinin karşılaştırılması üzerine bir inceleme. Necatibey Eğitim Fakültesi Elektronik Fen ve Matematik Eğitimi Dergisi, 4(1), 123-140.
  • Tekbiyik, A., & Akdeniz, A. R. (2008). İlköğretim fen ve teknoloji dersi öğretim programını kabullenmeye ve uygulamaya yönelik öğretmen görüşleri. Necatibey Eğitim Fakültesi Elektronik Fen ve Matematik Eğitimi Dergisi, 2(2), 23-27.
  • Tinajero, C., & Paramo, M. F. (1998). Field dependence-independence cognitive style and academic achievement: A review of research and theory. European Journal of Psychology of Education, 13(2), 227-251.
  • Thompson, B., Pitts, M. M., & Gipe, J. P. (1983). Use of the Group Embedded Figures Test with children. Perceptual and motor skills, 57(1), 199-203. Treagust, D. F., & Duit, R. (2008). Conceptual change: A discussion of theoretical, methodological and practical challenges for science education. Cultural Studies of Science Education, 3(2), 297-328.
  • Tokiz, A. (2013). İlköğretim 6. 7. ve 8. sınıf öğrencilerinin kuvvet ve hareket konusundaki kavramsal anlama düzeylerinin kavram karikatürleri, kavram haritası, çizimler ve görüşmeler kullanılarak değerlendirmesi. (Master thesis). Celal Bayar Üniversitesi, Manisa.
  • Unlu, P., Ingeç, S. K., & Tasar, M. F. (2006). Öğretmen adaylarının momentum ve impuls kavramlarına ilişkin bilgi yapılarının kavram haritaları yöntemi ile araştırılması. Eğitim ve Bilim, 31(139), 70-79.
  • Yagbasan, R., & Gulcicek, C. (2003). Fen öğretiminde kavram yanılgılarinın karakteristiklerinin tanımlanmasi. Pamukkale Üniversitesi Eğitim Fakültesi Dergisi, 13(13), 102-120.
  • Yin, Y., Tomita, M. K., & Shavelson, R. J. (2014). Using formal embedded formative assessments aligned with a short-term learning progression to promote conceptual change and achievement in science. International Journal of Science Education, 36(4), 531-552.
  • Yin, Y., Vanides, J., Ruiz‐Primo, M. A., Ayala, C. C., & Shavelson, R. J. (2005). Comparison of two concept‐mapping techniques: Implications for scoring, interpretation, and use. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 42(2), 166-184.
  • Yorek, N. (2007). Öğrenci çizimleri yoluyla 9 ve 11. sınıf öğrencilerinin hücre konusunda kavramsal anlama düzeylerinin belirlenmesi. Dokuz Eylül Üniversitesi Buca Eğitim Fakültesi Dergisi, (22).
  • Wild, T. A., Hilson, M. P., & Hobson, S. M. (2013). The conceptual understanding of sound by students with visual impairments. Journal of Visual Impairment & Blindness, 107(2), 107-116.
  • Witkin, H. A., & Goodenough, D. (1981). Cognitive styles essence and origins: Field dependence and field independence psychological issues: New York: International University Press.
  • Witkin, H. A., Oltman, P. K., Raskin, E., & Karp, S. A. (1971). Manual for embedded figures test, children’s embedded figures test, and group embedded figures test. Palo Alto, Calif.: Consulting Psychologists Press, Inc.
  • Witkin, H. A., Moore, C. A., Goodenough, D. R., & Cox, P. W. (1977). Field-dependent and field-independent cognitive styles and their educational implications. Review of educational research, 47(1), 1-64.
  • Witkin, H. A. (1977). Cognitive styles in personal and cultural adaptation: Clark University Press.
  • World Economic Forum (WEF). (2020). Schools of the Future: Defining New Models of Education for the Fourth Industrial Revolution. World Economic Forum 91-93 route de la Capite CH-1223 Cologny/Geneva Switzerland. Retrieved from: https://www.weforum.org/reports/schools-of-the-future-defining-new-models-of-education-for-the-fourth-industrial-revolution.
  • Ziane, J. (1996). The application of information processing theory to the learning of physics. Doctoral Dissertation, University of Glasgow, Scotland.
Toplam 126 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Makaleler
Yazarlar

Salih Ates Bu kişi benim 0000-0003-0425-0982

Sema Aydın Ceran Bu kişi benim 0000-0001-6847-2766

Yayımlanma Tarihi 20 Temmuz 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 20 Sayı: 88

Kaynak Göster

APA Ates, S., & Aydın Ceran, S. (2020). Conceptual Understanding Levels of Students with Different Cognitive Styles: An Evaluation in Terms of Different Measurement Techniques. Eurasian Journal of Educational Research, 20(88), 149-178.
AMA Ates S, Aydın Ceran S. Conceptual Understanding Levels of Students with Different Cognitive Styles: An Evaluation in Terms of Different Measurement Techniques. Eurasian Journal of Educational Research. Temmuz 2020;20(88):149-178.
Chicago Ates, Salih, ve Sema Aydın Ceran. “Conceptual Understanding Levels of Students With Different Cognitive Styles: An Evaluation in Terms of Different Measurement Techniques”. Eurasian Journal of Educational Research 20, sy. 88 (Temmuz 2020): 149-78.
EndNote Ates S, Aydın Ceran S (01 Temmuz 2020) Conceptual Understanding Levels of Students with Different Cognitive Styles: An Evaluation in Terms of Different Measurement Techniques. Eurasian Journal of Educational Research 20 88 149–178.
IEEE S. Ates ve S. Aydın Ceran, “Conceptual Understanding Levels of Students with Different Cognitive Styles: An Evaluation in Terms of Different Measurement Techniques”, Eurasian Journal of Educational Research, c. 20, sy. 88, ss. 149–178, 2020.
ISNAD Ates, Salih - Aydın Ceran, Sema. “Conceptual Understanding Levels of Students With Different Cognitive Styles: An Evaluation in Terms of Different Measurement Techniques”. Eurasian Journal of Educational Research 20/88 (Temmuz 2020), 149-178.
JAMA Ates S, Aydın Ceran S. Conceptual Understanding Levels of Students with Different Cognitive Styles: An Evaluation in Terms of Different Measurement Techniques. Eurasian Journal of Educational Research. 2020;20:149–178.
MLA Ates, Salih ve Sema Aydın Ceran. “Conceptual Understanding Levels of Students With Different Cognitive Styles: An Evaluation in Terms of Different Measurement Techniques”. Eurasian Journal of Educational Research, c. 20, sy. 88, 2020, ss. 149-78.
Vancouver Ates S, Aydın Ceran S. Conceptual Understanding Levels of Students with Different Cognitive Styles: An Evaluation in Terms of Different Measurement Techniques. Eurasian Journal of Educational Research. 2020;20(88):149-78.