Araştırma Makalesi
PDF EndNote BibTex RIS Kaynak Göster

Yıl 2021, Cilt: 5 Sayı: 1, 41 - 49, 26.06.2021

Öz

Kaynakça

  • Abbasov T, Yuceer M, Yildiz Z, 2011. Prediction of Cleaning Efficiency of the Electromagnetic Filtration Based Fuzzy Inference System, International Review of Chemical Engineering Process using Adaptive Neural Network,I.RE.CH.E., 3(2):285-289.
  • Aboud A, 2013. Drying Characteristic of Apple Slices Undertaken the Effect of Passive Shelf Solar Dryer and Open Sun Drying. Pakistan Journal of Nutrition, 12(3):250-254.
  • Askari GR, Emam-Djomeh Z, Mousavi SM, 2008. Investigation of the Effects of Microwave Treatment on the Optical Properties of Apple Slices During Drying. Drying Technology 26:1362–1368.
  • Ceylan İ, Aktas M, Doğan H, 2006. Güneş Enerjili Kurutma Fırınında Elma Kurutması, Politechnics Journal, 289-294.
  • Choi IH, Pak JM, Ahn CK, Lee SH, Lim MT, Song MK, 2015. Arbitration Algorithm of Optical Flow Based on ANFIS for Visual Object Tracking. Measurement. 75:338–353.
  • Cui Z, Li C, Song C, Song Y, 2008. Combined Microwave-Vacuum and Freeze Drying of Carrot and Apple Chips. Drying Technology. 26:1517–1523.
  • Decareau RV, 1992. in: Encyclopedia of Food Science and Technology. John Wiley. New York., No:3, pp. 1772–1778.
  • Demirhan E, Ozbek B, 2011. Thin-Layer Drying Characteristics and Modeling of Celery Leaves Undergoing Microwave Treatment. Chemical Engineering Communications 198(7):957-975.
  • Esen H, Ozgen F, Esen M, Sengur A, 2009. Artificial neural network and wavelet neural network approaches for modeling of a solar air heater, Expert Systems with Applications, 36(8):11240-11248.
  • Jang JR, 1993. ANFIS: Adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man, 23: 665–685.
  • Kharb RK, Shimi SL, Chatterji S, Ansari MF, 2014. Modeling of solar PV module and maximum point tracking using ANFIS. Renew. Sustain. Energy Rev. 33:602–612.
  • Ochoa-Martínez LA, García-Quintero M, Morales-Castro J, Gallegos-Infante J, Martínez-Sánchez CE, Herman-Lara E, 2006. Effect of CaCl2 and convective Osmotic Drying on Texture And Preference of Apple. Journal of Food Quality, 29:583–595.
  • Öztürk H, 2008. Yenilenebilir Enerji Kaynakları ve Kullanımı. Teknik Yayınevi Mühendislik. Mimarlık Yayınları. Ankara.
  • Sharma R, Patterh MS, 2015. A New Pose Invariant Face Recognition System Using PCA Optik.126, 3483–3487.

Adaptive Neural Network Based Fuzzy Inference System for the Determination of Performance in the Solar Tray Dryer

Yıl 2021, Cilt: 5 Sayı: 1, 41 - 49, 26.06.2021

Öz

This study aims to apply the adaptive neural network based fuzzy inference system (ANFIS) were used to modeling the apple solar drying conditions in the solar tray dryer. Apple slices were dried by solar drying techniques as a solar tray dryer, exposure to direct sunlight and in the shade. Drying air temperature, the air humidity, apple slice load, apple slice thickness and solar drying time has been investigated with the prediction of the drying in the solar tray dryer on water loss, drying rate and shrinkage ratio. The model results clearly showed that the use of ANFIS led to more accurate results. The correlation coefficient (R2) values of the water loss, drying rate and shrinkage ratio were found as 0.9968, 0,9675 and 0,9918, the water loss, drying rate and shrinkage ratio respectively.

Kaynakça

  • Abbasov T, Yuceer M, Yildiz Z, 2011. Prediction of Cleaning Efficiency of the Electromagnetic Filtration Based Fuzzy Inference System, International Review of Chemical Engineering Process using Adaptive Neural Network,I.RE.CH.E., 3(2):285-289.
  • Aboud A, 2013. Drying Characteristic of Apple Slices Undertaken the Effect of Passive Shelf Solar Dryer and Open Sun Drying. Pakistan Journal of Nutrition, 12(3):250-254.
  • Askari GR, Emam-Djomeh Z, Mousavi SM, 2008. Investigation of the Effects of Microwave Treatment on the Optical Properties of Apple Slices During Drying. Drying Technology 26:1362–1368.
  • Ceylan İ, Aktas M, Doğan H, 2006. Güneş Enerjili Kurutma Fırınında Elma Kurutması, Politechnics Journal, 289-294.
  • Choi IH, Pak JM, Ahn CK, Lee SH, Lim MT, Song MK, 2015. Arbitration Algorithm of Optical Flow Based on ANFIS for Visual Object Tracking. Measurement. 75:338–353.
  • Cui Z, Li C, Song C, Song Y, 2008. Combined Microwave-Vacuum and Freeze Drying of Carrot and Apple Chips. Drying Technology. 26:1517–1523.
  • Decareau RV, 1992. in: Encyclopedia of Food Science and Technology. John Wiley. New York., No:3, pp. 1772–1778.
  • Demirhan E, Ozbek B, 2011. Thin-Layer Drying Characteristics and Modeling of Celery Leaves Undergoing Microwave Treatment. Chemical Engineering Communications 198(7):957-975.
  • Esen H, Ozgen F, Esen M, Sengur A, 2009. Artificial neural network and wavelet neural network approaches for modeling of a solar air heater, Expert Systems with Applications, 36(8):11240-11248.
  • Jang JR, 1993. ANFIS: Adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man, 23: 665–685.
  • Kharb RK, Shimi SL, Chatterji S, Ansari MF, 2014. Modeling of solar PV module and maximum point tracking using ANFIS. Renew. Sustain. Energy Rev. 33:602–612.
  • Ochoa-Martínez LA, García-Quintero M, Morales-Castro J, Gallegos-Infante J, Martínez-Sánchez CE, Herman-Lara E, 2006. Effect of CaCl2 and convective Osmotic Drying on Texture And Preference of Apple. Journal of Food Quality, 29:583–595.
  • Öztürk H, 2008. Yenilenebilir Enerji Kaynakları ve Kullanımı. Teknik Yayınevi Mühendislik. Mimarlık Yayınları. Ankara.
  • Sharma R, Patterh MS, 2015. A New Pose Invariant Face Recognition System Using PCA Optik.126, 3483–3487.

Ayrıntılar

Birincil Dil İngilizce
Konular Gıda Mühendisliği
Bölüm Article
Yazarlar

Zehra YILDIZ
Tarsus Üniversitesi, Teknoloji Fakültesi
0000-0003-1304-4857
Türkiye


Leyla GOKAYAZ Bu kişi benim
ADANA ALPARSLAN TÜRKEŞ BİLİM VE TEKNOLOJİ ÜNİVERSİTESİ
Türkiye


Ercan KÖSE
Tarsus Üniversitesi
Türkiye


Aydın MÜHÜRCÜ
KIRKLARELİ ÜNİVERSİTESİ
Türkiye

Yayımlanma Tarihi 26 Haziran 2021
Yayınlandığı Sayı Yıl 2021 Cilt: 5 Sayı: 1

Kaynak Göster

Bibtex @araştırma makalesi { ejfst867861, journal = {Eurasian Journal of Food Science and Technology}, eissn = {2667-4890}, address = {Nevşehir Hacı Bektaş Veli Üniversitesi Mühendislik Mimarlık Fakültesi Biyosistem Mühendisliği Bölümü, Nevşehir}, publisher = {İlknur BAĞDATLI}, year = {2021}, volume = {5}, number = {1}, pages = {41 - 49}, title = {Adaptive Neural Network Based Fuzzy Inference System for the Determination of Performance in the Solar Tray Dryer}, key = {cite}, author = {Yıldız, Zehra and Gokayaz, Leyla and Köse, Ercan and Mühürcü, Aydın} }
APA Yıldız, Z. , Gokayaz, L. , Köse, E. & Mühürcü, A. (2021). Adaptive Neural Network Based Fuzzy Inference System for the Determination of Performance in the Solar Tray Dryer . Eurasian Journal of Food Science and Technology , Volume 5 Issue 1 , 41-49 . Retrieved from https://dergipark.org.tr/tr/pub/ejfst/issue/63044/867861
MLA Yıldız, Z. , Gokayaz, L. , Köse, E. , Mühürcü, A. "Adaptive Neural Network Based Fuzzy Inference System for the Determination of Performance in the Solar Tray Dryer" . Eurasian Journal of Food Science and Technology 5 (2021 ): 41-49 <https://dergipark.org.tr/tr/pub/ejfst/issue/63044/867861>
Chicago Yıldız, Z. , Gokayaz, L. , Köse, E. , Mühürcü, A. "Adaptive Neural Network Based Fuzzy Inference System for the Determination of Performance in the Solar Tray Dryer". Eurasian Journal of Food Science and Technology 5 (2021 ): 41-49
RIS TY - JOUR T1 - Adaptive Neural Network Based Fuzzy Inference System for the Determination of Performance in the Solar Tray Dryer AU - ZehraYıldız, LeylaGokayaz, ErcanKöse, AydınMühürcü Y1 - 2021 PY - 2021 N1 - DO - T2 - Eurasian Journal of Food Science and Technology JF - Journal JO - JOR SP - 41 EP - 49 VL - 5 IS - 1 SN - -2667-4890 M3 - UR - Y2 - 2021 ER -
EndNote %0 Eurasian Journal of Food Science and Technology Adaptive Neural Network Based Fuzzy Inference System for the Determination of Performance in the Solar Tray Dryer %A Zehra Yıldız , Leyla Gokayaz , Ercan Köse , Aydın Mühürcü %T Adaptive Neural Network Based Fuzzy Inference System for the Determination of Performance in the Solar Tray Dryer %D 2021 %J Eurasian Journal of Food Science and Technology %P -2667-4890 %V 5 %N 1 %R %U
ISNAD Yıldız, Zehra , Gokayaz, Leyla , Köse, Ercan , Mühürcü, Aydın . "Adaptive Neural Network Based Fuzzy Inference System for the Determination of Performance in the Solar Tray Dryer". Eurasian Journal of Food Science and Technology 5 / 1 (Haziran 2021): 41-49 .
AMA Yıldız Z. , Gokayaz L. , Köse E. , Mühürcü A. Adaptive Neural Network Based Fuzzy Inference System for the Determination of Performance in the Solar Tray Dryer. EJFST. 2021; 5(1): 41-49.
Vancouver Yıldız Z. , Gokayaz L. , Köse E. , Mühürcü A. Adaptive Neural Network Based Fuzzy Inference System for the Determination of Performance in the Solar Tray Dryer. Eurasian Journal of Food Science and Technology. 2021; 5(1): 41-49.
IEEE Z. Yıldız , L. Gokayaz , E. Köse ve A. Mühürcü , "Adaptive Neural Network Based Fuzzy Inference System for the Determination of Performance in the Solar Tray Dryer", Eurasian Journal of Food Science and Technology, c. 5, sayı. 1, ss. 41-49, Haz. 2021

Eurasian Journal of Food Science and Technology (EJFST)   e-ISSN: 2667-4890   Web: https://dergipark.org.tr/en/pub/ejfst   e-mail: foodsciencejournal@gmail.com