Thermal and Mechanical Properties of Sol-Gel Silica Coated Fabrics
Yıl 2021,
, 309 - 319, 31.12.2021
Abdullah Tav
,
Yahya Öz
,
Halil İbrahim Akyıldız
Öz
Sol-gel method is a versatile materials synthesis method via which numerous materials can be produced in various forms. The method also can be utilized for the modification of materials surfaces. Textile substrates being relatively inexpensive and flexible, can be used in composite structures for high technology applications. In this study, silica sol suspensions prepared via hydrolysis of tetraethyl orthosilicate were used to coat cotton, polyamide 6.6 (PA 6.6), and polyethylene terephthalate (PET) fabrics and to alter their thermal and mechanical properties. The coating process was conducted by applying the silica sol suspension to the fabric without any other additive and with poly(vinyl alcohol) (PVA) employed as a binder. The morphologies of the materials before and after the coating process were analyzed with SEM, and uniform coating of the fabrics was confirmed. FTIR spectra of the samples were compared to observe changes in the chemical functional groups, which showed the decrease in the substrate polymer peaks upon coating and the presence of Si-O bonding in some instances. The silica coating effect on the fabric samples’ thermal degradation was investigated using thermogravimetric analysis (TGA), showing that the thermal degradation behavior of the polymers mainly remained the same after the coating process. However, amounts of residual materials after burnout have differed with the coating type. The coatings’ mechanical performances were tested with tensile testing, which showed that the effect of the coating is highly dependent on the fabric material.
Destekleyen Kurum
TÜBİTAK
Teşekkür
We would like to thank The Scientific and Technological Research Council of Turkey (TUBITAK) (Project N: 118C100). We also offer our gratitude to Turkish Aerospace Scientific Research Projects program (TUSAŞ BAP).
Kaynakça
- Akyildiz, H. I., Lo, M., Dillon, E., Roberts, A. T., Everitt, H. O., & Jur, J. S. (2014). Formation of novel photoluminescent hybrid materials by sequential vapor infiltration into polyethylene terephthalate fibers. Journal of Materials Research, 29(23), 2817–2826. https://doi.org/10.1557/jmr.2014.333
- Akyildiz, H. I., Stano, K. L., Roberts, A. T., Everitt, H. O., & Jur, J. S. (2016). Photoluminescence Mechanism and Photocatalytic Activity of Organic-Inorganic Hybrid Materials Formed by Sequential Vapor Infiltration. Langmuir, 32(17), 4289–4296. https://doi.org/10.1021/acs.langmuir.6b00285
- Allen, A., Foulk, J., & Gamble, G. (2007). Preliminary Fourier-transform infrared spectroscopy analysis of cotton trash. Journal of Cotton Science, 11(1), 68–74.
- Amann, M., & Minge, O. (2012). Biodegradability of poly(vinyl acetate) and related polymers. Advances in Polymer Science, 245(January 2012), 137–172. https://doi.org/10.1007/12-2011-153
- Berendjchi, A., Khajavi, R., & Yazdanshenas, M. E. (2013). Application of nanosols in textile industry. International Journal of Green Nanotechnology, 5(1), 1–7. https://doi.org/10.1177/1943089213506814
- Boticas, I., Dias, D., Ferreira, D., Magalhães, P., Silva, R., & Fangueiro, R. (2019). Superhydrophobic cotton fabrics based on ZnO nanoparticles functionalization. SN Applied Sciences, 1(11). https://doi.org/10.1007/s42452-019-1423-2
- Chung, C., Lee, M., & Choe, E. K. (2004). Characterization of cotton fabric scouring by FT-IR ATR spectroscopy. Carbohydrate Polymers, 58(4), 417–420. https://doi.org/10.1016/j.carbpol.2004.08.005
- Costa, H. S., Mansur, A. A. P., Pereira, M. M., & Mansur, H. S. (2012). Engineered hybrid scaffolds of poly(vinyl alcohol)/bioactive glass for potential bone engineering applications: Synthesis, characterization, cytocompatibility, and degradation. Journal of Nanomaterials, 2012. https://doi.org/10.1155/2012/718470
- De Campos, B. M., Calefi, P. S., Ciuffi, K. J., De Faria, E. H., Rocha, L. A., Nassar, E. J., … Maia, I. A. (2014). Coating of polyamide 12 by sol-gel methodology. Journal of Thermal Analysis and Calorimetry, 115(2), 1029–1035. https://doi.org/10.1007/s10973-013-3384-9
- Ghasemi, H., Mirzadeh, A., Bates, P. J., & Kamal, M. R. (2014). Effect of Polyamide 66 on the Mechanical and Thermal Properties of Post-Industrial Waste Polyamide 6. Polymer - Plastics Technology and Engineering, 53(17), 1794–1803. https://doi.org/10.1080/03602559.2014.935398
- Giustino, F. (2005). INFRARED PROPERTIES OF THE Si-SiO 2 INTERFACE FROM FIRST PRINCIPLES.
- Gurav, J. L., Jung, I. K., Park, H. H., Kang, E. S., & Nadargi, D. Y. (2010). Silica aerogel: Synthesis and applications. Journal of Nanomaterials, 2010, 23. https://doi.org/10.1155/2010/409310
- Islam, S. R., Yu, W., & Naveed, T. (2019). Influence of silica aerogels on fabric structural feature for thermal isolation properties of weft-knitted spacer fabrics. Journal of Engineered Fibers and Fabrics, 14. https://doi.org/10.1177/1558925019866446
- Ismail, W. N. W. (2016). Sol–gel technology for innovative fabric finishing—A Review. Journal of Sol-Gel Science and Technology, 78(3), 698–707. https://doi.org/10.1007/s10971-016-4027-y
- Jelle, B. P., Baetens, R., & Gustavsen, A. (2015). Aerogel insulation for building applications, in the sol-gel handbook. 1385–1412.
- Kokabi, M., Sirousazar, M., & Hassan, Z. M. (2007). PVA-clay nanocomposite hydrogels for wound dressing. European Polymer Journal, 43(3), 773–781. https://doi.org/10.1016/j.eurpolymj.2006.11.030
- Lee, K. J., Choe, Y. J., Kim, Y. H., Lee, J. K., & Hwang, H. J. (2018). Fabrication of silica aerogel composite blankets from an aqueous silica aerogel slurry. Ceramics International, 44(2), 2204–2208. https://doi.org/10.1016/j.ceramint.2017.10.176
- Li, F., Xing, Y., & Ding, X. (2008). Silica xerogel coating on the surface of natural and synthetic fabrics. Surface and Coatings Technology, 202(19), 4721–4727. https://doi.org/10.1016/j.surfcoat.2008.04.048
- Li, L., & Yang, G. (2009). Variable-temperature FTIR studies on thermal stability of hydrogen bonding in nylon 6/mesoporous silica nanocomposite. Polymer International, 58(5), 503–510. https://doi.org/10.1002/pi.2559
- Mansur, H. S., Sadahira, C. M., Souza, A. N., & Mansur, A. A. P. (2008). FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde. Materials Science and Engineering C, 28(4), 539–548. https://doi.org/10.1016/j.msec.2007.10.088
- Nadi, A., Boukhriss, A., Bentis, A., Jabrane, E., & Gmouh, S. (2018). Evolution in the surface modification of textiles: a review. Textile Progress, 50(2), 67–108. https://doi.org/10.1080/00405167.2018.1533659
- Nampi, P. P., Kume, S., Hotta, Y., Watari, K., Itoh, M., Toda, H., & Matsutani, A. (2011). The effect of polyvinyl alcohol as a binder and stearic acid as an internal lubricant in the formation, and subsequent sintering of spray-dried alumina. Ceramics International, 37(8), 3445–3450. https://doi.org/10.1016/j.ceramint.2011.05.149
- Natarajan, S., & Jeyakodi Moses, J. (2012). Surface modification of polyester fabric using polyvinyl alcohol in alkaline medium. Indian Journal of Fibre and Textile Research, 37(3), 287–291.
- Periyasamy, A. P., Venkataraman, M., Kremenakova, D., Militky, J., & Zhou, Y. (2020). Progress in sol-gel technology for the coatings of fabrics. Materials, 13(8). https://doi.org/10.3390/MA13081838
- Pingan, H., Mengjun, J., Yanyan, Z., & Ling, H. (2017). A silica/PVA adhesive hybrid material with high transparency, thermostability and mechanical strength. RSC Advances, 7(5), 2450–2459. https://doi.org/10.1039/C6RA25579E
- Pirzada, T., Arvidson, S. A., Saquing, C. D., Shah, S. S., & Khan, S. A. (2012). Hybrid silica-PVA nanofibers via sol-gel electrospinning. Langmuir, 28(13), 5834–5844. https://doi.org/10.1021/la300049j
- Pisal, A. A., & Rao, A. V. (2016). Comparative studies on the physical properties of TEOS, TMOS and Na2SiO3 based silica aerogels by ambient pressure drying method. Journal of Porous Materials, 23(6), 1547–1556. https://doi.org/10.1007/s10934-016-0215-y
- Prevolnik, V., Zrim, P. K., & Rijavec, T. (2014). Textile Technological Properties of Laminated Silica Aerogel Blanket. Contemporary Materials, 1(5), 117–123. https://doi.org/10.7251/cm.v1i5.1507
- Purwar, R., Sharma, S., Sahoo, P., & Srivastava, C. M. (2015). Flexible sericin/polyvinyl alcohol/clay blend films. Fibers and Polymers, 16(4), 761–768. https://doi.org/10.1007/s12221-015-0761-y
- Roe, B., & Zhang, X. (2009). Durable Hydrophobic Textile Fabric Finishing Using Silica Nanoparticles and Mixed Silanes. Textile Research Journal, 79(12), 1115–1122. https://doi.org/10.1177/0040517508100184
- Rosace, G., Guido, E., Colleoni, C., & Barigozzi, G. (2016). Influence of textile structure and silica based finishing on thermal insulation properties of cotton fabrics. International Journal of Polymer Science, 2016(March). https://doi.org/10.1155/2016/1726475
- Rubio, F., Rubio, J., & Oteo, J. L. (1998). A FT-IR study of the hydrolysis of Tetraethylorthoselicate (TEOS). Spectroscopy Letters, 31(1), 199–219. https://doi.org/10.1080/00387019808006772
- Shahidi, S., & Wiener, J. (2013). Eco-Friendly Textile Dyeing and Finishing. Eco-Friendly Textile Dyeing and Finishing, (January 2013). https://doi.org/10.5772/3436
- Talebi, Z., Habibi, N., & Zadhoush, A. (2018). Surface Modification of Basalt Fibers by Nanostructured Silica Aerogel. Fibers and Polymers, 19(9), 1843–1849. https://doi.org/10.1007/s12221-018-7710-5
- Teli, M. D., & Annaldewar, B. N. (2017). Superhydrophobic and ultraviolet protective nylon fabrics by modified nano silica coating. Journal of the Textile Institute, 108(3), 460–466. https://doi.org/10.1080/00405000.2016.1171028
- Wu, G., Yang, Y., Lei, Y., Fu, D., Li, Y., Zhan, Y., … Teng, M. (2020). Hydrophilic nano-SiO2/PVA-based coating with durable antifogging properties. Journal of Coatings Technology and Research, 17(5), 1145–1155. https://doi.org/10.1007/s11998-020-00338-z
- Wu, J. W., Huang, Y. Q., Li, H. B., Runt, J., & Yeh, J. T. (2018). Properties of polyamide 6,10/poly(vinyl alcohol) blends and impact on oxygen barrier performance. Polymer International, 67(4), 453–462. https://doi.org/10.1002/pi.5528
- Xu, J., Jiang, S. X., Peng, L., Wang, Y., Shang, S., Miao, D., & Guo, R. (2019). AgNps-PVA–coated woven cotton fabric: Preparation, water repellency, shielding properties and antibacterial activity. Journal of Industrial Textiles, 48(10), 1545–1565. https://doi.org/10.1177/1528083718764908
- Xu, X., Li, B., Lu, H., Zhang, Z., & Wang, H. (2007). The interface structure of nano-SiO 2 /PA66 composites and its influence on material’s mechanical and thermal properties. Applied Surface Science, 254(5), 1456–1462. https://doi.org/10.1016/j.apsusc.2007.07.014
- Zeng, C., Wang, H., Zhou, H., & Lin, T. (2015). Self-cleaning, superhydrophobic cotton fabrics with excellent washing durability, solvent resistance and chemical stability prepared from an SU-8 derived surface coating. RSC Advances, 5(75), 61044–61050. https://doi.org/10.1039/c5ra08040a
Sol-Jel Silika Kaplanmış Kumaşların Isıl ve Mekanik Özellikleri
Yıl 2021,
, 309 - 319, 31.12.2021
Abdullah Tav
,
Yahya Öz
,
Halil İbrahim Akyıldız
Öz
Sol-jel yöntemi çok çeşitli malzemelerin üretilebildiği, çok kullanışlı bir malzeme sentez yöntemidir. Bu yöntem, malzeme yüzeylerinin modifikasyonu içinde kullanılabilmektedir. Görece ucuz ve esnek yapıda olan tekstil malzemeleri, yüksek teknoloji kompozit uygulamaları için de kullanılmaktadır. Bu çalışmada, tetraetil ortosilikatın hidrolizi ile hazırlanan silika sol süspansiyonları, pamuk, poliamid 6.6 (PA 6.6) ve polietilen tereftalat (PET) kumaşlarını kaplamak için kullanılmış olup termal ve mekanik özelliklerine olan etkisi incelenmektedir. Silika sol süspansiyonu içerisine herhangi ilave bir katkı kullanılmadan ve bağlayıcı olarak poli(vinil alkol) (PVA) kullanılarak kumaşların kaplaması gerçekleştirilmiştir. Malzemelerin morfolojileri kaplama işleminden önce ve sonra SEM ile analiz edilmiş olup kaplamaların kumaş yüzeylerinde düzgün dağıldığı teyit edilmiştir. Fonksiyonel gruplardaki değişiklikleri gözlemlemek için numunelerin FTIR spektrumu ile kaplanmış malzemelerin kimyasal yapıları karşılaştırılmıştır. Numunelerin FTIR spektrumları kaplama sonrasında polimer piklerinin kaplama sonrası azaldığını ve bazı numunelerde Si-O bağlanma durumlarını göstermiştir. Silika kaplanmış kumaş numunelerinin termal bozunması üzerindeki etkisi, termogravimetrik analiz (TGA) kullanılarak incelenmektedir. Kaplama sonrasında polimerlerin ısıl bozunma davranışlarının büyük ölçüde aynı kaldığı ancak kalıntı miktarlarında kaplama türüne göre farklılıklar gösterdiği gözlemlenmiştir. Kaplamaların mekanik performansı, büyük ölçüde kumaş malzemesine bağlı olduğu, çekme testi ile tespit edilmiştir. Çekme testleri sonucu kaplamalı kumaşların mekanik performansının büyük ölçüde kumaş hammaddesine bağlı olduğunu göstermiştir.
Kaynakça
- Akyildiz, H. I., Lo, M., Dillon, E., Roberts, A. T., Everitt, H. O., & Jur, J. S. (2014). Formation of novel photoluminescent hybrid materials by sequential vapor infiltration into polyethylene terephthalate fibers. Journal of Materials Research, 29(23), 2817–2826. https://doi.org/10.1557/jmr.2014.333
- Akyildiz, H. I., Stano, K. L., Roberts, A. T., Everitt, H. O., & Jur, J. S. (2016). Photoluminescence Mechanism and Photocatalytic Activity of Organic-Inorganic Hybrid Materials Formed by Sequential Vapor Infiltration. Langmuir, 32(17), 4289–4296. https://doi.org/10.1021/acs.langmuir.6b00285
- Allen, A., Foulk, J., & Gamble, G. (2007). Preliminary Fourier-transform infrared spectroscopy analysis of cotton trash. Journal of Cotton Science, 11(1), 68–74.
- Amann, M., & Minge, O. (2012). Biodegradability of poly(vinyl acetate) and related polymers. Advances in Polymer Science, 245(January 2012), 137–172. https://doi.org/10.1007/12-2011-153
- Berendjchi, A., Khajavi, R., & Yazdanshenas, M. E. (2013). Application of nanosols in textile industry. International Journal of Green Nanotechnology, 5(1), 1–7. https://doi.org/10.1177/1943089213506814
- Boticas, I., Dias, D., Ferreira, D., Magalhães, P., Silva, R., & Fangueiro, R. (2019). Superhydrophobic cotton fabrics based on ZnO nanoparticles functionalization. SN Applied Sciences, 1(11). https://doi.org/10.1007/s42452-019-1423-2
- Chung, C., Lee, M., & Choe, E. K. (2004). Characterization of cotton fabric scouring by FT-IR ATR spectroscopy. Carbohydrate Polymers, 58(4), 417–420. https://doi.org/10.1016/j.carbpol.2004.08.005
- Costa, H. S., Mansur, A. A. P., Pereira, M. M., & Mansur, H. S. (2012). Engineered hybrid scaffolds of poly(vinyl alcohol)/bioactive glass for potential bone engineering applications: Synthesis, characterization, cytocompatibility, and degradation. Journal of Nanomaterials, 2012. https://doi.org/10.1155/2012/718470
- De Campos, B. M., Calefi, P. S., Ciuffi, K. J., De Faria, E. H., Rocha, L. A., Nassar, E. J., … Maia, I. A. (2014). Coating of polyamide 12 by sol-gel methodology. Journal of Thermal Analysis and Calorimetry, 115(2), 1029–1035. https://doi.org/10.1007/s10973-013-3384-9
- Ghasemi, H., Mirzadeh, A., Bates, P. J., & Kamal, M. R. (2014). Effect of Polyamide 66 on the Mechanical and Thermal Properties of Post-Industrial Waste Polyamide 6. Polymer - Plastics Technology and Engineering, 53(17), 1794–1803. https://doi.org/10.1080/03602559.2014.935398
- Giustino, F. (2005). INFRARED PROPERTIES OF THE Si-SiO 2 INTERFACE FROM FIRST PRINCIPLES.
- Gurav, J. L., Jung, I. K., Park, H. H., Kang, E. S., & Nadargi, D. Y. (2010). Silica aerogel: Synthesis and applications. Journal of Nanomaterials, 2010, 23. https://doi.org/10.1155/2010/409310
- Islam, S. R., Yu, W., & Naveed, T. (2019). Influence of silica aerogels on fabric structural feature for thermal isolation properties of weft-knitted spacer fabrics. Journal of Engineered Fibers and Fabrics, 14. https://doi.org/10.1177/1558925019866446
- Ismail, W. N. W. (2016). Sol–gel technology for innovative fabric finishing—A Review. Journal of Sol-Gel Science and Technology, 78(3), 698–707. https://doi.org/10.1007/s10971-016-4027-y
- Jelle, B. P., Baetens, R., & Gustavsen, A. (2015). Aerogel insulation for building applications, in the sol-gel handbook. 1385–1412.
- Kokabi, M., Sirousazar, M., & Hassan, Z. M. (2007). PVA-clay nanocomposite hydrogels for wound dressing. European Polymer Journal, 43(3), 773–781. https://doi.org/10.1016/j.eurpolymj.2006.11.030
- Lee, K. J., Choe, Y. J., Kim, Y. H., Lee, J. K., & Hwang, H. J. (2018). Fabrication of silica aerogel composite blankets from an aqueous silica aerogel slurry. Ceramics International, 44(2), 2204–2208. https://doi.org/10.1016/j.ceramint.2017.10.176
- Li, F., Xing, Y., & Ding, X. (2008). Silica xerogel coating on the surface of natural and synthetic fabrics. Surface and Coatings Technology, 202(19), 4721–4727. https://doi.org/10.1016/j.surfcoat.2008.04.048
- Li, L., & Yang, G. (2009). Variable-temperature FTIR studies on thermal stability of hydrogen bonding in nylon 6/mesoporous silica nanocomposite. Polymer International, 58(5), 503–510. https://doi.org/10.1002/pi.2559
- Mansur, H. S., Sadahira, C. M., Souza, A. N., & Mansur, A. A. P. (2008). FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde. Materials Science and Engineering C, 28(4), 539–548. https://doi.org/10.1016/j.msec.2007.10.088
- Nadi, A., Boukhriss, A., Bentis, A., Jabrane, E., & Gmouh, S. (2018). Evolution in the surface modification of textiles: a review. Textile Progress, 50(2), 67–108. https://doi.org/10.1080/00405167.2018.1533659
- Nampi, P. P., Kume, S., Hotta, Y., Watari, K., Itoh, M., Toda, H., & Matsutani, A. (2011). The effect of polyvinyl alcohol as a binder and stearic acid as an internal lubricant in the formation, and subsequent sintering of spray-dried alumina. Ceramics International, 37(8), 3445–3450. https://doi.org/10.1016/j.ceramint.2011.05.149
- Natarajan, S., & Jeyakodi Moses, J. (2012). Surface modification of polyester fabric using polyvinyl alcohol in alkaline medium. Indian Journal of Fibre and Textile Research, 37(3), 287–291.
- Periyasamy, A. P., Venkataraman, M., Kremenakova, D., Militky, J., & Zhou, Y. (2020). Progress in sol-gel technology for the coatings of fabrics. Materials, 13(8). https://doi.org/10.3390/MA13081838
- Pingan, H., Mengjun, J., Yanyan, Z., & Ling, H. (2017). A silica/PVA adhesive hybrid material with high transparency, thermostability and mechanical strength. RSC Advances, 7(5), 2450–2459. https://doi.org/10.1039/C6RA25579E
- Pirzada, T., Arvidson, S. A., Saquing, C. D., Shah, S. S., & Khan, S. A. (2012). Hybrid silica-PVA nanofibers via sol-gel electrospinning. Langmuir, 28(13), 5834–5844. https://doi.org/10.1021/la300049j
- Pisal, A. A., & Rao, A. V. (2016). Comparative studies on the physical properties of TEOS, TMOS and Na2SiO3 based silica aerogels by ambient pressure drying method. Journal of Porous Materials, 23(6), 1547–1556. https://doi.org/10.1007/s10934-016-0215-y
- Prevolnik, V., Zrim, P. K., & Rijavec, T. (2014). Textile Technological Properties of Laminated Silica Aerogel Blanket. Contemporary Materials, 1(5), 117–123. https://doi.org/10.7251/cm.v1i5.1507
- Purwar, R., Sharma, S., Sahoo, P., & Srivastava, C. M. (2015). Flexible sericin/polyvinyl alcohol/clay blend films. Fibers and Polymers, 16(4), 761–768. https://doi.org/10.1007/s12221-015-0761-y
- Roe, B., & Zhang, X. (2009). Durable Hydrophobic Textile Fabric Finishing Using Silica Nanoparticles and Mixed Silanes. Textile Research Journal, 79(12), 1115–1122. https://doi.org/10.1177/0040517508100184
- Rosace, G., Guido, E., Colleoni, C., & Barigozzi, G. (2016). Influence of textile structure and silica based finishing on thermal insulation properties of cotton fabrics. International Journal of Polymer Science, 2016(March). https://doi.org/10.1155/2016/1726475
- Rubio, F., Rubio, J., & Oteo, J. L. (1998). A FT-IR study of the hydrolysis of Tetraethylorthoselicate (TEOS). Spectroscopy Letters, 31(1), 199–219. https://doi.org/10.1080/00387019808006772
- Shahidi, S., & Wiener, J. (2013). Eco-Friendly Textile Dyeing and Finishing. Eco-Friendly Textile Dyeing and Finishing, (January 2013). https://doi.org/10.5772/3436
- Talebi, Z., Habibi, N., & Zadhoush, A. (2018). Surface Modification of Basalt Fibers by Nanostructured Silica Aerogel. Fibers and Polymers, 19(9), 1843–1849. https://doi.org/10.1007/s12221-018-7710-5
- Teli, M. D., & Annaldewar, B. N. (2017). Superhydrophobic and ultraviolet protective nylon fabrics by modified nano silica coating. Journal of the Textile Institute, 108(3), 460–466. https://doi.org/10.1080/00405000.2016.1171028
- Wu, G., Yang, Y., Lei, Y., Fu, D., Li, Y., Zhan, Y., … Teng, M. (2020). Hydrophilic nano-SiO2/PVA-based coating with durable antifogging properties. Journal of Coatings Technology and Research, 17(5), 1145–1155. https://doi.org/10.1007/s11998-020-00338-z
- Wu, J. W., Huang, Y. Q., Li, H. B., Runt, J., & Yeh, J. T. (2018). Properties of polyamide 6,10/poly(vinyl alcohol) blends and impact on oxygen barrier performance. Polymer International, 67(4), 453–462. https://doi.org/10.1002/pi.5528
- Xu, J., Jiang, S. X., Peng, L., Wang, Y., Shang, S., Miao, D., & Guo, R. (2019). AgNps-PVA–coated woven cotton fabric: Preparation, water repellency, shielding properties and antibacterial activity. Journal of Industrial Textiles, 48(10), 1545–1565. https://doi.org/10.1177/1528083718764908
- Xu, X., Li, B., Lu, H., Zhang, Z., & Wang, H. (2007). The interface structure of nano-SiO 2 /PA66 composites and its influence on material’s mechanical and thermal properties. Applied Surface Science, 254(5), 1456–1462. https://doi.org/10.1016/j.apsusc.2007.07.014
- Zeng, C., Wang, H., Zhou, H., & Lin, T. (2015). Self-cleaning, superhydrophobic cotton fabrics with excellent washing durability, solvent resistance and chemical stability prepared from an SU-8 derived surface coating. RSC Advances, 5(75), 61044–61050. https://doi.org/10.1039/c5ra08040a