Araştırma Makalesi
BibTex RIS Kaynak Göster

The Effect of Mechanical Properties on the Ultrasonic Velocity Of Ceramic Based Composites Fabricated By Electroless Coating Technique

Yıl 2021, , 171 - 175, 31.12.2021
https://doi.org/10.31590/ejosat.1007528

Öz

The scope of the present study is to investigate the change of ultrasonic velocity with the physical and mechanical properties of Ni-Ti-WC composites. Since the materials used in the aerospace and automotive industries are exposed to high temperatures, friction and high stresses, the need for metal matrix composite materials used in manufacturing applications such as cutting discs and inserts has increased rapidly. Ni-Ti metal matrix composites reinforced with WC were circularly shaped in uniaxial hydraulic press. A mixture of 30% Ni, 2% Ti and 68% WC powders was sintered at 1000°C-1400°C with argon atmosphere in a tube furnace and were fabricated by electroless plating technique. XRD (X-Ray diffraction, SEM (Scanning Electron Microscope), compressive testing, hardness and ultrasonic velocity measurements were employed to investigated the mechanical and physical properties of specimens. Experimental results showed that ultrasound velocity values increased polynomial linearly with increasing sintering temperature. In addition, the fact that the highest sintering temperature resulted in 429.1HV hardness at 1400°C is an indication that the structure has become more robust and compact. The change in ultrasonic velocities with increasing sintering temperature is evidence of a better bonding of the structure.

Kaynakça

  • Anik M., Korpe E., 2007, “Effect of Alloy Microstructure on Electroless NiP Deposition Behavior on Alloy AZ91”, Surface & Coatings Technology Vol: 8-201, p. 4702–4710.
  • Mallory G.O., Hadju J.B., 1990, “Electroless Plating: Fundamentals and Applications”, American Electroplaters and Surface Finishers Society, Orlando.
  • Zhang Q., Wu, M., and Wen Z., 2005, “Electroless nickel plating on hollow glass microspheres”, Surface & Coatings Technology, 192, p. 213– 219.
  • Bindra P., Light D., Rath D., 1984, “Mechanisms of electroless metal plating: I. Mixed potential theory and the interdependence of partial reactions”, IBM J. Res. Develop. Vol:28, No:6, pp. 668-678.
  • Agarwala R.C. and Agarwala V., 2003, “Electroless alloy/composite coatings: A review”, Sadhana Vol. 28, Parts 3 & 4, p. 475–493.
  • Surender M., Balasubramaniam R. and Basu B.,2004, “Electrochemical Behaviour of Electrodeposited Ni-WC Composite Coatings” Surface and Coatings Technology 187(1), pp.93-97.
  • Chen Y., Cao M., Xu Q. ve Zhu J., 2003, “Electroless Nickel Platting on Silicon Carbide Nanoparticles”, Surface and Coatings Technology, p. 90-94.
  • Gaard A., Krakhmalev P., Bergstrom J., 2006, “Microstructural characterization and wear behavior of (Fe,Ni) TiC MMC prepared by DMLS”, Journal of Alloys and Compounds, 421, p. 166–171.
  • Li T., Li Q., Fuha J.Y.H., Yu P. C., Wu C.C., 2006, “Effects of Lower Cobalt Binder Concentrations in Sintering of Tungsten Carbide”, Materials Science and Engineering a Vol. 430, p. 113–119.
  • Mc Candlish L. E., Seegopaul P., Sadangi R. K., 1995, “Inhibition of WC Grain Growth During Sintering Of WC-Co Powder Compacts”, Advances in Powder Metallurgy and Particulate Materials, Volume: 3, p.13-23.
  • Bilici Özkan V., Yönetken A., Erol A., 2021, “Characterization of Physical and Mechanical Properties of Ni-Co-WC Ceramic-Metal Composites Using Ultrasonics”, 5th International Conference on Engineering Technology and Applied Sciences, 02-06 August 2021, Sarajevo, Bosnia and Herzegovina.
  • Mažeika L., Šliteris R., Vladišauskas A., 2010, “Measurement of velocity and attenuation for ultrasonic longitudinal waves in the polyethylene samples”, ISSN 1392-2114 Ultragarsas (Ultrasound), Vol. 65, No.4, p.12-15.
  • Bhaskar, A., 2011. Characterization of hollow particulate and graded composites using ultrasonic technique, Master's Theses, University of Rhode Island.
  • Eren E., Kurama S., 2012, “Characterization of Mechanical Properties of Porcelain Tile Using Ultrasonics”, Gazi University Journal of Science (GU J Sci.), 25(3), p. 761-768.
  • Sarpün İ.H., Özkan V., Ünal R., Tuncel S., 2009, “Mean grain size evaluation of tungsten- and boron-carbide composites sintered at various temperatures by ultrasonic methods”, Int. J. Microstructure and Materials Properties, Vol. 4, No. 1, p. 104-111.
  • Karabulut H., Çıtak R., Çinici H., 2013, “Mekanik Alaşımlama Süresinin Al+% 10 Al2O3 Kompozitlerde Eğme Dayanımına Etkisi”, Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 28(3), p. 635-643.

Akımsız Kaplama Tekniği ile Üretilen Seramik Esaslı Kompozitlerin Ultrases ile Mekanik Özelliklere Etkisinin Araştırılması

Yıl 2021, , 171 - 175, 31.12.2021
https://doi.org/10.31590/ejosat.1007528

Öz

Bu çalışmanın kapsamı, WC esaslı kompozitlerin fiziksel ve mekanik özellikleri ile ultrasonik hızın değişimini araştırmaktır. Havacılık ve otomotiv endüstrilerinde kullanılan malzemeler yüksek sıcaklıklara, sürtünmeye ve yüksek gerilimlere maruz kaldığından kesme diskleri ve kesici uçlar gibi imalat uygulamalarında kullanılan metal matrisli kompozit malzemelere olan ihtiyaç hızla artmıştır. WC ile güçlendirilmiş Ni-Ti metal matrisli kompozitler, tek eksenli hidrolik preste dairesel olarak şekillendirildi. %30 Ni, %2 Ti ve %68 WC tozlarından oluşan karışım 1000°C-1400°C'de argon atmosferinde tüp fırında sinterlenmiş ve akımsız kaplama tekniği ile üretilmiştir. Numunelerin mekanik ve fiziksel özelliklerini incelemek için XRD (X-Işınları kırınımı, SEM (Taramalı Elektron Mikroskobu), sıkıştırma testi, sertlik ve ultrasonik hız ölçümleri kullanılmıştır. Deneysel sonuçlar, artan sinterleme sıcaklığı ile ultrason hız değerlerinin polinom lineer olarak arttığını göstermiştir. Ayrıca en yüksek sinterleme sıcaklığının 1400°C'de 429.1HV sertlik ile sonuçlanması yapının daha sağlam ve kompakt hale geldiğinin bir göstergesidir. Sinterleme sıcaklığının artmasıyla ultrasonik hızlardaki değişim tanecik büyümesini iyi geçekleştiğinin kanıtıdır.

Kaynakça

  • Anik M., Korpe E., 2007, “Effect of Alloy Microstructure on Electroless NiP Deposition Behavior on Alloy AZ91”, Surface & Coatings Technology Vol: 8-201, p. 4702–4710.
  • Mallory G.O., Hadju J.B., 1990, “Electroless Plating: Fundamentals and Applications”, American Electroplaters and Surface Finishers Society, Orlando.
  • Zhang Q., Wu, M., and Wen Z., 2005, “Electroless nickel plating on hollow glass microspheres”, Surface & Coatings Technology, 192, p. 213– 219.
  • Bindra P., Light D., Rath D., 1984, “Mechanisms of electroless metal plating: I. Mixed potential theory and the interdependence of partial reactions”, IBM J. Res. Develop. Vol:28, No:6, pp. 668-678.
  • Agarwala R.C. and Agarwala V., 2003, “Electroless alloy/composite coatings: A review”, Sadhana Vol. 28, Parts 3 & 4, p. 475–493.
  • Surender M., Balasubramaniam R. and Basu B.,2004, “Electrochemical Behaviour of Electrodeposited Ni-WC Composite Coatings” Surface and Coatings Technology 187(1), pp.93-97.
  • Chen Y., Cao M., Xu Q. ve Zhu J., 2003, “Electroless Nickel Platting on Silicon Carbide Nanoparticles”, Surface and Coatings Technology, p. 90-94.
  • Gaard A., Krakhmalev P., Bergstrom J., 2006, “Microstructural characterization and wear behavior of (Fe,Ni) TiC MMC prepared by DMLS”, Journal of Alloys and Compounds, 421, p. 166–171.
  • Li T., Li Q., Fuha J.Y.H., Yu P. C., Wu C.C., 2006, “Effects of Lower Cobalt Binder Concentrations in Sintering of Tungsten Carbide”, Materials Science and Engineering a Vol. 430, p. 113–119.
  • Mc Candlish L. E., Seegopaul P., Sadangi R. K., 1995, “Inhibition of WC Grain Growth During Sintering Of WC-Co Powder Compacts”, Advances in Powder Metallurgy and Particulate Materials, Volume: 3, p.13-23.
  • Bilici Özkan V., Yönetken A., Erol A., 2021, “Characterization of Physical and Mechanical Properties of Ni-Co-WC Ceramic-Metal Composites Using Ultrasonics”, 5th International Conference on Engineering Technology and Applied Sciences, 02-06 August 2021, Sarajevo, Bosnia and Herzegovina.
  • Mažeika L., Šliteris R., Vladišauskas A., 2010, “Measurement of velocity and attenuation for ultrasonic longitudinal waves in the polyethylene samples”, ISSN 1392-2114 Ultragarsas (Ultrasound), Vol. 65, No.4, p.12-15.
  • Bhaskar, A., 2011. Characterization of hollow particulate and graded composites using ultrasonic technique, Master's Theses, University of Rhode Island.
  • Eren E., Kurama S., 2012, “Characterization of Mechanical Properties of Porcelain Tile Using Ultrasonics”, Gazi University Journal of Science (GU J Sci.), 25(3), p. 761-768.
  • Sarpün İ.H., Özkan V., Ünal R., Tuncel S., 2009, “Mean grain size evaluation of tungsten- and boron-carbide composites sintered at various temperatures by ultrasonic methods”, Int. J. Microstructure and Materials Properties, Vol. 4, No. 1, p. 104-111.
  • Karabulut H., Çıtak R., Çinici H., 2013, “Mekanik Alaşımlama Süresinin Al+% 10 Al2O3 Kompozitlerde Eğme Dayanımına Etkisi”, Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 28(3), p. 635-643.
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Ahmet Yönetken 0000-0003-1844-7233

Vildan Özkan Bilici 0000-0002-3077-2103

Yayımlanma Tarihi 31 Aralık 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Yönetken, A., & Özkan Bilici, V. (2021). The Effect of Mechanical Properties on the Ultrasonic Velocity Of Ceramic Based Composites Fabricated By Electroless Coating Technique. Avrupa Bilim Ve Teknoloji Dergisi(31), 171-175. https://doi.org/10.31590/ejosat.1007528