Araştırma Makalesi
BibTex RIS Kaynak Göster

Number of Subsets of the Set [n] Including No Three Consecutive Even Integers.

Yıl 2021, Sayı: 28, 552 - 556, 30.11.2021
https://doi.org/10.31590/ejosat.1008742

Öz

Consider an integer sequence counting the number of subsets of S of the set {1,2, . . . ,n } containing no three consecutive even integers. The sequence is associated with the Tribonacci sequence. Furthermore, we investigate some basic properties of the sequence.

Kaynakça

  • Bueno, A. C. F. (2015). A note on generalized Tribonacci sequence, Notes on Number Theory and Discrete Mathematics, 21, 67-69.
  • Feinberg, M. (1963). Fibonacci–Tribonacci, Fibonacci Quarterly, 1, 71–74.
  • Pethe, S. (1988). Some Identities for Tribonacci sequences, Fibonacci Q., 26, 144–151.
  • Ramirez, J. L. and Sirvent, V. F. (2014), Incomplete Tribonacci numbers and polynomials, Journal of Integer Sequences, 17 Article 14.4.2.
  • Shannon, A. (1977). Tribonacci numbers and Pascal’s pyramid, Fibonacci Q., 15, 268–275.
  • Spickerman, W. and Joyner, R. N. Binets’s formula for the Recursive sequence of Order K, Fibonacci Q., 22, 327–331.
  • Spickerman, W. (1982). Binet’s formula for the Tribonacci sequence, Fibonacci Q., 20, (118-120).
  • Wilf, H. S. (1990). Generatingfunctionology, Academic Press.
  • Yalavigi, C. C. (1972), Properties of Tribonacci numbers, Fibonacci Quarterly, 10 231–246.
  • Yilmaz, N. and Taskara, N. (2014). Tribonacci and Tribonacci-Lucas Numbers via the Determinants of Special Matrices, Appl. Math. Sci., 8(39), 1947–1955.

[n] Kümesinin Ardışık Üç Çift Tam Sayı İçermeyen Alt Kümelerinin Sayısı

Yıl 2021, Sayı: 28, 552 - 556, 30.11.2021
https://doi.org/10.31590/ejosat.1008742

Öz

{1,2, . . . ,n } kümesinin ardışık üç çift tam sayı içermeyen S alt kümelerinin sayısını veren tam sayı dizisini alalım. Bu dizi Tribonacci sayı dizisi ile ilişkilendirildi. Ayrıca dizinin bazı temel özellikleri incelendi.

Kaynakça

  • Bueno, A. C. F. (2015). A note on generalized Tribonacci sequence, Notes on Number Theory and Discrete Mathematics, 21, 67-69.
  • Feinberg, M. (1963). Fibonacci–Tribonacci, Fibonacci Quarterly, 1, 71–74.
  • Pethe, S. (1988). Some Identities for Tribonacci sequences, Fibonacci Q., 26, 144–151.
  • Ramirez, J. L. and Sirvent, V. F. (2014), Incomplete Tribonacci numbers and polynomials, Journal of Integer Sequences, 17 Article 14.4.2.
  • Shannon, A. (1977). Tribonacci numbers and Pascal’s pyramid, Fibonacci Q., 15, 268–275.
  • Spickerman, W. and Joyner, R. N. Binets’s formula for the Recursive sequence of Order K, Fibonacci Q., 22, 327–331.
  • Spickerman, W. (1982). Binet’s formula for the Tribonacci sequence, Fibonacci Q., 20, (118-120).
  • Wilf, H. S. (1990). Generatingfunctionology, Academic Press.
  • Yalavigi, C. C. (1972), Properties of Tribonacci numbers, Fibonacci Quarterly, 10 231–246.
  • Yilmaz, N. and Taskara, N. (2014). Tribonacci and Tribonacci-Lucas Numbers via the Determinants of Special Matrices, Appl. Math. Sci., 8(39), 1947–1955.
Toplam 10 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Barış Arslan 0000-0002-6972-3317

Kemal Uslu 0000-0001-6265-3128

Yayımlanma Tarihi 30 Kasım 2021
Yayımlandığı Sayı Yıl 2021 Sayı: 28

Kaynak Göster

APA Arslan, B., & Uslu, K. (2021). Number of Subsets of the Set [n] Including No Three Consecutive Even Integers. Avrupa Bilim ve Teknoloji Dergisi(28), 552-556. https://doi.org/10.31590/ejosat.1008742