Araştırma Makalesi
BibTex RIS Kaynak Göster

Plazma Ortamında Aktifleştirilen Bimetalik Nano-katalizör Varlığında Sodyum Borhidrürün Hidrolizinin İncelenmesi

Yıl 2021, , 487 - 492, 31.12.2021
https://doi.org/10.31590/ejosat.1008996

Öz

Bu çalışmada CoBi bimetalik nano katalizörüne plazma etkisi ile hidroliz reaksiyonundaki aktivitesi araştırılmıştır. Hidrojen kaynağı olarak sodyum borhidrür kullanılmıştır. Sentezlenen katalizörün yüzeyi geçirmeli elektron mikroskopisi (TEM) ve yüzey boyut dağılımı (BET) ile analiz edilmiştir. Plazma etkisini incelemek için katalizör plazma gücü (%60, %80 ve %100), plazma süresi (10, 15 ve 20 dakika) ve plazma ortamına verilen inert gaz (CO2, N2 ve Ar) gibi çeşitli parametreler uygulanmıştır. Bu uygulanan parametreler sonucu oluşan katalizör, 30 oC, 10 ml su, %1 NaBH4, %5 NaOH ve 25 mg katalizör varlığında hidroliz reaksiyonuna ilave edilmiştir. Hidroliz reaksiyonunu tamamlama süreleri referans alınarak CoBi katalizörünü aktifleştirmek için uygun koşulların CO2 gazı ortamında %80 plazma gücü ile 15 dakika plazma uygulanması olduğu belirlenmiştir.

Kaynakça

  • Ali, F., Khan, S. B., & Asiri, A. M. (2019). Chitosan coated cellulose cotton fibers as catalyst for the H2 production from NaBH4 methanolysis. international journal of hydrogen energy, 44(8), 4143-4155.
  • Avci Hansu, T., Caglar, A., Demir Kivrak, H., & Sahin, O. Structure of ruthenium nanocatalysts of bismuth, investigation of its effect on hydrolysis performance and kinetic studies. Energy Storage, e267.
  • Avci Hansu, T., Sahin, O., Çağlar, A., & Demir Kivrak, H. (2021). Untangling the cobalt promotion role for ruthenium in sodium borohydride dehydrogenation with multiwalled carbon nanotube‐supported binary ruthenium cobalt catalyst. International Journal of Energy Research, 45(4), 6054-6066.
  • Bekirogullari, M., Abut, S., Duman, F., & Hansu, T. A. (2021). Lake sediment based catalyst for hydrogen generation via methanolysis of sodium borohydride: an optimization study with artificial neural network modelling. Reaction Kinetics, Mechanisms and Catalysis, 1-18.
  • Boynueğri, T. A., & Metin, G. (2021). Releasing hydrogen from NaBH4 via hydrogel based CoF2 catalyst. Isı Bilimi ve Tekniği Dergisi, 41(1), 1-9.
  • Ekinci, A., Şahin, Ö., Saka, C., & Avci, T. (2013). The effects of plasma treatment on electrochemical activity of Co–W–B catalyst for hydrogen production by hydrolysis of NaBH4. International journal of hydrogen energy, 38(35), 15295-15301.
  • Hansu, T., Caglar, A., Sahin, O., & Demir Kıvrak, H. (2020). A comparative study for sodium borohydride dehydrogenation and electrooxidation on cerium and cobalt catalysts. International journal of ecosystems and ecology science, 10(2), 389-400
  • Hansu, T. A., Sahin, O., Caglar, A., & Kivrak, H. (2020). A remarkable Mo doped Ru catalyst for hydrogen generation from sodium borohydride: the effect of Mo addition and estimation of kinetic parameters. Reaction Kinetics, Mechanisms and Catalysis, 131(2), 661-676.
  • Karaoğlu, S. Y., & Karaoğlu, S. Hydrogen generation from sodium borohydride with cobalt boride catalysts. ALKÜ Fen Bilimleri Dergisi, 2(2), 84-96.
  • Kaya, M. (2020). Evaluating organic waste sources (spent coffee ground) as metal-free catalyst for hydrogen generation by the methanolysis of sodium borohydride. international journal of hydrogen energy, 45(23), 12743-12754.
  • Lee, J., Kong, K. Y., Jung, C. R., Cho, E., Yoon, S. P., Han, J., . . . Nam, S. W. (2007). A structured Co–B catalyst for hydrogen extraction from NaBH4 solution. Catalysis today, 120(3-4), 305-310.
  • Mistry, H., Varela, A. S., Bonifacio, C. S., Zegkinoglou, I., Sinev, I., Choi, Y.-W., . . . Strasser, P. (2016). Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene. Nature communications, 7(1), 1-9.
  • Moriarty, P., & Honnery, D. (2020). Feasibility of a 100% global renewable energy system. Energies, 13(21), 5543.
  • Panwar, N., Kaushik, S., & Kothari, S. (2011). Role of renewable energy sources in environmental protection: A review. Renewable and sustainable energy reviews, 15(3), 1513-1524.
  • Shang, Y., & Chen, R. (2006). Hydrogen storage via the hydrolysis of NaBH4 basic solution: optimization of NaBH4 concentration. Energy & fuels, 20(5), 2142-2148.
  • Şahin, Ö., Karakaş, D. E., Kaya, M., & Saka, C. (2017). The effects of plasma treatment on electrochemical activity of Co–B–P catalyst for hydrogen production by hydrolysis of NaBH4. Journal of the Energy Institute, 90(3), 466-475.
  • Şahin, Ö., Saka, C., Baytar, O., & Hansu, F. (2013). Influence of plasma treatment on electrochemical activity of Ni (o)-based catalyst for hydrogen production by hydrolysis of NaBH4. Journal of Power Sources, 240, 729-735.
  • Wee, J.-H., Lee, K.-Y., & Kim, S. H. (2006). Sodium borohydride as the hydrogen supplier for proton exchange membrane fuel cell systems. Fuel processing technology, 87(9), 811-819.
  • Xia, X., & Xia, J. (2010). Evaluation of potential for developing renewable sources of energy to facilitate development in developing countries. Paper presented at the 2010 Asia-Pacific Power and Energy Engineering Conference.

Study of the Activity of a Novel Green Catalyst Used in the Production of Hydrogen from Methanolysis of Sodium Borohydride

Yıl 2021, , 487 - 492, 31.12.2021
https://doi.org/10.31590/ejosat.1008996

Öz

In this study, the activity of CoBi bimetallic nanocatalyst in hydrolysis reaction with plasma effect was investigated. Sodium borohydride was used as the hydrogen source. The surface of the synthesized catalyst was analyzed by transmission electron microscopy (TEM) and surface size distribution (BET). Various parameters such as catalyst plasma power (60%, 80% and 100%), plasma time (10, 15 and 20 min) and inert gas (CO2, N2 and Ar) given to the plasma medium were applied to examine the plasma effect. The catalyst formed as a result of these applied parameters was added to the hydrolysis reaction in the presence of 30 oC, 10 ml of water, 1% NaBH4, 5% NaOH and 25 mg of catalyst. Based on the completion times of the hydrolysis reaction, it was determined that the appropriate conditions for activating the CoBi catalyst were to apply plasma for 15 minutes with 80% plasma power in the CO2 gas environment

Kaynakça

  • Ali, F., Khan, S. B., & Asiri, A. M. (2019). Chitosan coated cellulose cotton fibers as catalyst for the H2 production from NaBH4 methanolysis. international journal of hydrogen energy, 44(8), 4143-4155.
  • Avci Hansu, T., Caglar, A., Demir Kivrak, H., & Sahin, O. Structure of ruthenium nanocatalysts of bismuth, investigation of its effect on hydrolysis performance and kinetic studies. Energy Storage, e267.
  • Avci Hansu, T., Sahin, O., Çağlar, A., & Demir Kivrak, H. (2021). Untangling the cobalt promotion role for ruthenium in sodium borohydride dehydrogenation with multiwalled carbon nanotube‐supported binary ruthenium cobalt catalyst. International Journal of Energy Research, 45(4), 6054-6066.
  • Bekirogullari, M., Abut, S., Duman, F., & Hansu, T. A. (2021). Lake sediment based catalyst for hydrogen generation via methanolysis of sodium borohydride: an optimization study with artificial neural network modelling. Reaction Kinetics, Mechanisms and Catalysis, 1-18.
  • Boynueğri, T. A., & Metin, G. (2021). Releasing hydrogen from NaBH4 via hydrogel based CoF2 catalyst. Isı Bilimi ve Tekniği Dergisi, 41(1), 1-9.
  • Ekinci, A., Şahin, Ö., Saka, C., & Avci, T. (2013). The effects of plasma treatment on electrochemical activity of Co–W–B catalyst for hydrogen production by hydrolysis of NaBH4. International journal of hydrogen energy, 38(35), 15295-15301.
  • Hansu, T., Caglar, A., Sahin, O., & Demir Kıvrak, H. (2020). A comparative study for sodium borohydride dehydrogenation and electrooxidation on cerium and cobalt catalysts. International journal of ecosystems and ecology science, 10(2), 389-400
  • Hansu, T. A., Sahin, O., Caglar, A., & Kivrak, H. (2020). A remarkable Mo doped Ru catalyst for hydrogen generation from sodium borohydride: the effect of Mo addition and estimation of kinetic parameters. Reaction Kinetics, Mechanisms and Catalysis, 131(2), 661-676.
  • Karaoğlu, S. Y., & Karaoğlu, S. Hydrogen generation from sodium borohydride with cobalt boride catalysts. ALKÜ Fen Bilimleri Dergisi, 2(2), 84-96.
  • Kaya, M. (2020). Evaluating organic waste sources (spent coffee ground) as metal-free catalyst for hydrogen generation by the methanolysis of sodium borohydride. international journal of hydrogen energy, 45(23), 12743-12754.
  • Lee, J., Kong, K. Y., Jung, C. R., Cho, E., Yoon, S. P., Han, J., . . . Nam, S. W. (2007). A structured Co–B catalyst for hydrogen extraction from NaBH4 solution. Catalysis today, 120(3-4), 305-310.
  • Mistry, H., Varela, A. S., Bonifacio, C. S., Zegkinoglou, I., Sinev, I., Choi, Y.-W., . . . Strasser, P. (2016). Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene. Nature communications, 7(1), 1-9.
  • Moriarty, P., & Honnery, D. (2020). Feasibility of a 100% global renewable energy system. Energies, 13(21), 5543.
  • Panwar, N., Kaushik, S., & Kothari, S. (2011). Role of renewable energy sources in environmental protection: A review. Renewable and sustainable energy reviews, 15(3), 1513-1524.
  • Shang, Y., & Chen, R. (2006). Hydrogen storage via the hydrolysis of NaBH4 basic solution: optimization of NaBH4 concentration. Energy & fuels, 20(5), 2142-2148.
  • Şahin, Ö., Karakaş, D. E., Kaya, M., & Saka, C. (2017). The effects of plasma treatment on electrochemical activity of Co–B–P catalyst for hydrogen production by hydrolysis of NaBH4. Journal of the Energy Institute, 90(3), 466-475.
  • Şahin, Ö., Saka, C., Baytar, O., & Hansu, F. (2013). Influence of plasma treatment on electrochemical activity of Ni (o)-based catalyst for hydrogen production by hydrolysis of NaBH4. Journal of Power Sources, 240, 729-735.
  • Wee, J.-H., Lee, K.-Y., & Kim, S. H. (2006). Sodium borohydride as the hydrogen supplier for proton exchange membrane fuel cell systems. Fuel processing technology, 87(9), 811-819.
  • Xia, X., & Xia, J. (2010). Evaluation of potential for developing renewable sources of energy to facilitate development in developing countries. Paper presented at the 2010 Asia-Pacific Power and Energy Engineering Conference.
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Tulin Avcı Hansu 0000-0001-5441-4696

Saliha Özarslan 0000-0001-5696-9644

Yayımlanma Tarihi 31 Aralık 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Avcı Hansu, T., & Özarslan, S. (2021). Plazma Ortamında Aktifleştirilen Bimetalik Nano-katalizör Varlığında Sodyum Borhidrürün Hidrolizinin İncelenmesi. Avrupa Bilim Ve Teknoloji Dergisi(31), 487-492. https://doi.org/10.31590/ejosat.1008996