Mo-katkılı Mikroalg Kullanılarak Enerji Depolama Amaçlı Süperkapasitör Üretimi
Yıl 2021,
, 493 - 497, 31.12.2021
Mustafa Kaya
,
Fevzi Hansu
,
Murat Akdemir
Öz
Enerji depolama ihtiyaçını gidermek ve geleneksel kondansatörler ve bataryaların dezavantajlarını aşmak için son zamanlarda süperkapasitörler üzerine yoğun çalışmalar yapılmaktadır. Bu çalışma kapsamında, tatlı su yosunu biyokütlesi olan Microcystis aeruginosa’ya Molibden katkılama yapılmış, karbonizasyon ve aktivasyon yöntemleri birleştirilerek aktif karbon üretimi gerçekleştirilmiştir. Üretilen aktif karbonlar püskürtme yöntemi kullanılarak elektrotlara dönüştürülmüş ve bir süperkapasitör hücresi hazırlanmıştır. Elektrotların elektrokimyasal testleri, elektrolit olarak 6 M KOH kullanılarak iki elektrotlu bir sistemle yapılmıştır. Elektrotunun spesifik kapasitans değeri 1 A/g akım yoğunluğunda 9,84 F/g olarak hesaplanmıştır. Kararlılık testine tabi tutulan elektrotlarda sadece %5,75 lik bir kapasite azalması görülmüştür. Elde edilen veriler ışığında hazırlanan elektrotların ucuzluğu, düşük iç direnci ve kararlılığı nedeniyle enerji depolama alanında umut vaat ettiği düşünülmektedir.
Destekleyen Kurum
Siirt Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü
Proje Numarası
2020-SİÜMÜH-014
Teşekkür
Siirt Üniversitesi Biyoteknoloji Laboratuvarına değerli katkılarından ve Siirt Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğüne mali katkılarından dolayı teşekkür ederiz.
Kaynakça
- Akdemir, M., Avci Hansu, T., Caglar, A., Kaya, M., & Demir Kivrak, H. (2021). Ruthenium modified defatted spent coffee catalysts for supercapacitor and methanolysis application. Energy Storage, 3(4), e243. doi:https://doi.org/10.1002/est2.243
- Cheng, Q., Tang, J., Ma, J., Zhang, H., Shinya, N., & Qin, L.-C. (2011). Graphene and nanostructured MnO2 composite electrodes for supercapacitors. Carbon, 49(9), 2917-2925.
- Elma Karakaş, D., Akdemir, M., Atabani, A. E., & Kaya, M. (2021). A dual functional material: Spirulina Platensis waste-supported Pd-Co catalyst as a novel promising supercapacitor electrode. Fuel, 304, 121334. doi:https://doi.org/10.1016/j.fuel.2021.121334
- Gamby, J., Taberna, P., Simon, P., Fauvarque, J., & Chesneau, M. (2001). Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors. Journal of Power Sources, 101(1), 109-116.
- Inal, I. I. G., Akdemir, M., & Kaya, M. (2021). Microcystis aeruginosa supported-Mn catalyst as a new promising supercapacitor electrode: A dual functional material. International Journal of Hydrogen Energy, 46, 21534-21541.
- Kang, W., Lin, B., Huang, G., Zhang, C., Yao, Y., Hou, W., . . . Xing, B. (2018). Peanut bran derived hierarchical porous carbon for supercapacitor. Journal of Materials Science: Materials in Electronics, 29(8), 6361-6368.
- Klemm, D., Heublein, B., Fink, H. P., & Bohn, A. (2005). Cellulose: fascinating biopolymer and sustainable raw material. Angewandte chemie international edition, 44(22), 3358-3393.
- Lan, D., Chen, M., Liu, Y., Liang, Q., Tu, W., Chen, Y., . . . Qiu, F. (2020). Preparation and characterization of high value-added activated carbon derived from biowaste walnut shell by KOH activation for supercapacitor electrode. Journal of Materials Science: Materials in Electronics, 31(21), 18541-18553.
- Luan, Y., Huang, Y., Wang, L., Li, M., Wang, R., & Jiang, B. (2016). Porous carbon@ MnO2 and nitrogen-doped porous carbon from carbonized loofah sponge for asymmetric supercapacitor with high energy and power density. Journal of Electroanalytical Chemistry, 763, 90-96.
- Mehare, M., Deshmukh, A., & Dhoble, S. (2021). Bio-waste lemon peel derived carbon based electrode in perspect of supercapacitor. Journal of Materials Science: Materials in Electronics, 32(10), 14057-14071.
- Mohanty, A., Jaihindh, D., Fu, Y.-P., Senanayak, S. P., Mende, L. S., & Ramadoss, A. (2021). An extensive review on three dimension architectural Metal-Organic Frameworks towards supercapacitor application. Journal of Power Sources, 488, 229444.
- Özarslan, S., Raşit Atelge, M., Kaya, M., & Ünalan, S. (2021). A Novel Tea factory waste metal-free catalyst as promising supercapacitor electrode for hydrogen production and energy storage: A dual functional material. Fuel, 305, 121578. doi:https://doi.org/10.1016/j.fuel.2021.121578
- Pandolfo, A. G., & Hollenkamp, A. F. (2006). Carbon properties and their role in supercapacitors. Journal of Power Sources, 157(1), 11-27. doi:https://doi.org/10.1016/j.jpowsour.2006.02.065
- Sakib, M. N., Ahmed, S., Rahat, S. M. S. M., & Shuchi, S. B. (2021). A review of recent advances in manganese-based supercapacitors. Journal of Energy Storage, 44, 103322. doi:https://doi.org/10.1016/j.est.2021.103322
- Song, X., Ma, X., Li, Y., Ding, L., & Jiang, R. (2019). Tea waste derived microporous active carbon with enhanced double-layer supercapacitor behaviors. Applied Surface Science, 487, 189-197.
- Tian, Y., Yang, X., Nautiyal, A., Zheng, Y., Guo, Q., Luo, J., & Zhang, X. (2019). One-step microwave synthesis of MoS 2/MoO 3@ graphite nanocomposite as an excellent electrode material for supercapacitors. Advanced Composites and Hybrid Materials, 2(1), 151-161.
Wang, H., & Cui, Y. (2019). Nanodiamonds for energy. Carbon Energy, 1(1), 13-18.
- Wang, Y., Zhang, L., Hou, H., Xu, W., Duan, G., He, S., . . . Jiang, S. (2021). Recent progress in carbon-based materials for supercapacitor electrodes: a review. Journal of Materials Science, 56(1), 173-200.
- Yan, X., Yu, Y., & Yang, X. (2014). Effects of electrolytes on the capacitive behavior of nitrogen/phosphorus co-doped nonporous carbon nanofibers: an insight into the role of phosphorus groups. RSC Advances, 4(48), 24986-24990.
- Zhang, W., Lin, N., Liu, D., Xu, J., Sha, J., Yin, J., . . . Lin, H. (2017). Direct carbonization of rice husk to prepare porous carbon for supercapacitor applications. Energy, 128, 618-625.
- Zhang, Y., Liu, S., Zheng, X., Wang, X., Xu, Y., Tang, H., . . . Luo, J. (2017). Biomass organs control the porosity of their pyrolyzed carbon. Advanced functional materials, 27(3), 1604687.
- Zhu, X., Yu, S., Xu, K., Zhang, Y., Zhang, L., Lou, G., . . . Shen, Z. (2018). Sustainable activated carbons from dead ginkgo leaves for supercapacitor electrode active materials. Chemical Engineering Science, 181, 36-45.
Production of a Supercapacitor for Energy Storage Using Mo-doped Microalgae
Yıl 2021,
, 493 - 497, 31.12.2021
Mustafa Kaya
,
Fevzi Hansu
,
Murat Akdemir
Öz
In order to meet the energy storage needs and overcome the disadvantages of conventional capacitors and batteries, intensive studies have been carried out on supercapacitors recently. In this study, Molybdenum was doped to Microcystis aeruginosa, a freshwater algae biomass, and activated carbon was produced by combining carbonization and activation methods. Produced activated carbons were converted into electrodes using sputtering method and a supercapacitor cell was prepared. Electrochemical tests of the electrodes were performed with a two-electrode system using 6 M KOH as the electrolyte. The specific capacitance value of the electrode was calculated as 9.84 F/g at a current density of 1 A/g. The electrodes subjected to the stability test showed only a 5.75% capacitance reduction. In the light of the results, electrodes prepared are thought to be promising in the field of energy storage due to their cheapness, low internal resistance, and stability.
Proje Numarası
2020-SİÜMÜH-014
Kaynakça
- Akdemir, M., Avci Hansu, T., Caglar, A., Kaya, M., & Demir Kivrak, H. (2021). Ruthenium modified defatted spent coffee catalysts for supercapacitor and methanolysis application. Energy Storage, 3(4), e243. doi:https://doi.org/10.1002/est2.243
- Cheng, Q., Tang, J., Ma, J., Zhang, H., Shinya, N., & Qin, L.-C. (2011). Graphene and nanostructured MnO2 composite electrodes for supercapacitors. Carbon, 49(9), 2917-2925.
- Elma Karakaş, D., Akdemir, M., Atabani, A. E., & Kaya, M. (2021). A dual functional material: Spirulina Platensis waste-supported Pd-Co catalyst as a novel promising supercapacitor electrode. Fuel, 304, 121334. doi:https://doi.org/10.1016/j.fuel.2021.121334
- Gamby, J., Taberna, P., Simon, P., Fauvarque, J., & Chesneau, M. (2001). Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors. Journal of Power Sources, 101(1), 109-116.
- Inal, I. I. G., Akdemir, M., & Kaya, M. (2021). Microcystis aeruginosa supported-Mn catalyst as a new promising supercapacitor electrode: A dual functional material. International Journal of Hydrogen Energy, 46, 21534-21541.
- Kang, W., Lin, B., Huang, G., Zhang, C., Yao, Y., Hou, W., . . . Xing, B. (2018). Peanut bran derived hierarchical porous carbon for supercapacitor. Journal of Materials Science: Materials in Electronics, 29(8), 6361-6368.
- Klemm, D., Heublein, B., Fink, H. P., & Bohn, A. (2005). Cellulose: fascinating biopolymer and sustainable raw material. Angewandte chemie international edition, 44(22), 3358-3393.
- Lan, D., Chen, M., Liu, Y., Liang, Q., Tu, W., Chen, Y., . . . Qiu, F. (2020). Preparation and characterization of high value-added activated carbon derived from biowaste walnut shell by KOH activation for supercapacitor electrode. Journal of Materials Science: Materials in Electronics, 31(21), 18541-18553.
- Luan, Y., Huang, Y., Wang, L., Li, M., Wang, R., & Jiang, B. (2016). Porous carbon@ MnO2 and nitrogen-doped porous carbon from carbonized loofah sponge for asymmetric supercapacitor with high energy and power density. Journal of Electroanalytical Chemistry, 763, 90-96.
- Mehare, M., Deshmukh, A., & Dhoble, S. (2021). Bio-waste lemon peel derived carbon based electrode in perspect of supercapacitor. Journal of Materials Science: Materials in Electronics, 32(10), 14057-14071.
- Mohanty, A., Jaihindh, D., Fu, Y.-P., Senanayak, S. P., Mende, L. S., & Ramadoss, A. (2021). An extensive review on three dimension architectural Metal-Organic Frameworks towards supercapacitor application. Journal of Power Sources, 488, 229444.
- Özarslan, S., Raşit Atelge, M., Kaya, M., & Ünalan, S. (2021). A Novel Tea factory waste metal-free catalyst as promising supercapacitor electrode for hydrogen production and energy storage: A dual functional material. Fuel, 305, 121578. doi:https://doi.org/10.1016/j.fuel.2021.121578
- Pandolfo, A. G., & Hollenkamp, A. F. (2006). Carbon properties and their role in supercapacitors. Journal of Power Sources, 157(1), 11-27. doi:https://doi.org/10.1016/j.jpowsour.2006.02.065
- Sakib, M. N., Ahmed, S., Rahat, S. M. S. M., & Shuchi, S. B. (2021). A review of recent advances in manganese-based supercapacitors. Journal of Energy Storage, 44, 103322. doi:https://doi.org/10.1016/j.est.2021.103322
- Song, X., Ma, X., Li, Y., Ding, L., & Jiang, R. (2019). Tea waste derived microporous active carbon with enhanced double-layer supercapacitor behaviors. Applied Surface Science, 487, 189-197.
- Tian, Y., Yang, X., Nautiyal, A., Zheng, Y., Guo, Q., Luo, J., & Zhang, X. (2019). One-step microwave synthesis of MoS 2/MoO 3@ graphite nanocomposite as an excellent electrode material for supercapacitors. Advanced Composites and Hybrid Materials, 2(1), 151-161.
Wang, H., & Cui, Y. (2019). Nanodiamonds for energy. Carbon Energy, 1(1), 13-18.
- Wang, Y., Zhang, L., Hou, H., Xu, W., Duan, G., He, S., . . . Jiang, S. (2021). Recent progress in carbon-based materials for supercapacitor electrodes: a review. Journal of Materials Science, 56(1), 173-200.
- Yan, X., Yu, Y., & Yang, X. (2014). Effects of electrolytes on the capacitive behavior of nitrogen/phosphorus co-doped nonporous carbon nanofibers: an insight into the role of phosphorus groups. RSC Advances, 4(48), 24986-24990.
- Zhang, W., Lin, N., Liu, D., Xu, J., Sha, J., Yin, J., . . . Lin, H. (2017). Direct carbonization of rice husk to prepare porous carbon for supercapacitor applications. Energy, 128, 618-625.
- Zhang, Y., Liu, S., Zheng, X., Wang, X., Xu, Y., Tang, H., . . . Luo, J. (2017). Biomass organs control the porosity of their pyrolyzed carbon. Advanced functional materials, 27(3), 1604687.
- Zhu, X., Yu, S., Xu, K., Zhang, Y., Zhang, L., Lou, G., . . . Shen, Z. (2018). Sustainable activated carbons from dead ginkgo leaves for supercapacitor electrode active materials. Chemical Engineering Science, 181, 36-45.