Araştırma Makalesi
BibTex RIS Kaynak Göster

Model Tabanlı Tasarım Araçları ile Robot Programlama

Yıl 2021, , 861 - 869, 31.12.2021
https://doi.org/10.31590/ejosat.1010444

Öz

Bu çalışmada endüstriyel alanda yaygın olarak kullanılan altı serbestlik derecesine sahip 6R manipülatörleri için model tabanlı bir tasarım yapılmış ve çıktı olarak bir simülasyon ve test ortamı elde edilmiştir. 6R manipülatörünün 3 boyutlu modeli, katı model ve simülasyon yazılımı kullanılarak tasarlanmış ve çizilmiştir. Elde edilen katı model MATLAB™'a aktarılmış ve SimMechanics™'e entegre edilmiştir. Elde edilen çıktı ile ileri ve ters kinematik hesaplamalar bilgisayar ortamında gerçekleştirilmiştir. Tasarımı gerçekleştirilen simülasyon ve tasarlanan görsel arayüzün işlevselliği, IRB120 6R manipülatörü kullanılarak doğrulanmıştır. Arayüz ile manipülatör arasındaki veri aktarımı, TCP / IP soket iletişimi ile yapılmıştır.

Kaynakça

  • Alkan, M. A. (2018). Karanlık Fabrikalar ile İnsansız Üretim. Endüstri 4.0. https://www.endustri40.com/karanlik-fabrikalar-ile-insansiz-uretim/
  • Baizid, K., Ćuković, S., Iqbal, J., Yousnadj, A., Chellali, R., Meddahi, A., Devedžić, G., & Ghionea, I. (2016). IRoSim: Industrial Robotics Simulation Design Planning and Optimization platform based on CAD and knowledgeware technologies. Robotics and Computer-Integrated Manufacturing, 42, 121–134. https://doi.org/10.1016/j.rcim.2016.06.003
  • Banka, N., & Lin, Y. J. (2003). Mechanical design for assembly of a 4-DOF robotic arm utilizing a top-down concept. Robotica, 21(5), 567–573. https://doi.org/10.1017/S0263574702004848
  • Brogårdh, T. (2009). Robot control overview: An industrial perspective. In Modeling, Identification and Control (Vol. 30, Issue 3, pp. 167–180). https://doi.org/10.4173/mic.2009.3.7
  • Craig, J. J. (2005). Introduction to Robotics Mechanics and Control (A. Dworkin, Ed.; 3rd ed.). Pearson Prentice Hall.
  • Denavit, J., & Hartenberg, R. (1955). A kinematic notation for lower-pair mechanisms based on matrices. ASME Journal of Applied Mechanics, 22, 215–221.
  • Gil, A., Reinoso, O., Marin, J. M., Paya, L., & Ruiz, J. (2015). Development and deployment of a new robotics toolbox for education. Computer Applications in Engineering Education, 23(3), 443–454. https://doi.org/10.1002/cae.21615
  • Hermann, M., Pentek, T., & Otto, B. (2016). Design principles for industrie 4.0 scenarios. Proceedings of the Annual Hawaii International Conference on System Sciences, 2016-March, 3928–3937. https://doi.org/10.1109/HICSS.2016.488
  • Jones BE, F. J. (1990). Modelling, Simulation and Identification of an Industrial Manipulator. Dublin City University.
  • Mikkelsen, J. (1998). A machine vision system controlling a Lynx arm robot along a path. University of Cape Town, South Africa.
  • Mourtzis, D., Fotia, S., Boli, N., & Vlachou, E. (2019). Modelling and quantification of industry 4.0 manufacturing complexity based on information theory: a robotics case study. International Journal of Production Research, 1–14. https://doi.org/10.1080/00207543.2019.1571686
  • Neto, P., Mendes, N., Arajo, R., Pires, J. N., & Moreira, A. P. (2012). High-level robot programming based on CAD: Dealing with unpredictable environments. Industrial Robot, 39(3), 294–303. https://doi.org/10.1108/01439911211217125
  • Niku, S. B. (2001). Introduction to Robotics: Analysis, Systems, Applications (1st ed.). Prentice Hall.
  • Rajeevlochana, C. G., Jain, A., Shah, S. V, & Saha, S. K. (2011). Recursive Robot Dynamics. In S. Bandopadhyay, S. Gurunathan, & P. Ramu (Eds.), Introduction to Robotics (pp. 1–9). Narosa Publishing House, New Delhi.
  • Rajeevlochana, C. G., & Saha, S. K. (2011, February). RoboAnalyzer: 3D model based robotic learning software. In International Conference on Multi Body Dynamics (pp. 3-13).
  • Sanfilippo, F., Hatledal, L. I., Zhang, H., Fago, M., & Pettersen, K. Y. (2015). Controlling Kuka Industrial Robots: Flexible Communication Interface JOpenShowVar. IEEE Robotics & Automation Magazine, 22(4), 96–109. https://doi.org/10.1109/MRA.2015.2482839
  • Schou, C., Damgaard, J. S., Bogh, S., & Madsen, O. (2013). Human-robot interface for instructing industrial tasks using kinesthetic teaching. 2013 44th International Symposium on Robotics, ISR 2013, 1–6. https://doi.org/10.1109/ISR.2013.6695599
  • Udai, A. D., Rajeevlochana, C. G., & Saha, S. K. (2011). Dynamic Simulation of a KUKA KR5 Industrial Robot using MATLAB SimMechanics. 15th National Conference on Machines and Mechanisms, 96, 1–8.

Robot Programming Using Model Based Design Tools

Yıl 2021, , 861 - 869, 31.12.2021
https://doi.org/10.31590/ejosat.1010444

Öz

Bu çalışmada endüstriyel alanda yaygın olarak kullanılan altı serbestlik derecesine sahip 6R manipülatörleri için model tabanlı bir tasarım yapılmış ve çıktı olarak bir simülasyon ve test ortamı elde edilmiştir. 6R manipülatörünün 3 boyutlu modeli, katı model ve simülasyon yazılımı kullanılarak tasarlanmış ve çizilmiştir. Elde edilen katı model MATLAB™'a aktarılmış ve SimMechanics™'e entegre edilmiştir. Elde edilen çıktı ile ileri ve ters kinematik hesaplamalar bilgisayar ortamında gerçekleştirilmiştir. Tasarımı gerçekleştirilen simülasyon ve tasarlanan görsel arayüzün işlevselliği, IRB120 6R manipülatörü kullanılarak doğrulanmıştır. Arayüz ile manipülatör arasındaki veri aktarımı, TCP / IP soket iletişimi ile yapılmıştır.

Kaynakça

  • Alkan, M. A. (2018). Karanlık Fabrikalar ile İnsansız Üretim. Endüstri 4.0. https://www.endustri40.com/karanlik-fabrikalar-ile-insansiz-uretim/
  • Baizid, K., Ćuković, S., Iqbal, J., Yousnadj, A., Chellali, R., Meddahi, A., Devedžić, G., & Ghionea, I. (2016). IRoSim: Industrial Robotics Simulation Design Planning and Optimization platform based on CAD and knowledgeware technologies. Robotics and Computer-Integrated Manufacturing, 42, 121–134. https://doi.org/10.1016/j.rcim.2016.06.003
  • Banka, N., & Lin, Y. J. (2003). Mechanical design for assembly of a 4-DOF robotic arm utilizing a top-down concept. Robotica, 21(5), 567–573. https://doi.org/10.1017/S0263574702004848
  • Brogårdh, T. (2009). Robot control overview: An industrial perspective. In Modeling, Identification and Control (Vol. 30, Issue 3, pp. 167–180). https://doi.org/10.4173/mic.2009.3.7
  • Craig, J. J. (2005). Introduction to Robotics Mechanics and Control (A. Dworkin, Ed.; 3rd ed.). Pearson Prentice Hall.
  • Denavit, J., & Hartenberg, R. (1955). A kinematic notation for lower-pair mechanisms based on matrices. ASME Journal of Applied Mechanics, 22, 215–221.
  • Gil, A., Reinoso, O., Marin, J. M., Paya, L., & Ruiz, J. (2015). Development and deployment of a new robotics toolbox for education. Computer Applications in Engineering Education, 23(3), 443–454. https://doi.org/10.1002/cae.21615
  • Hermann, M., Pentek, T., & Otto, B. (2016). Design principles for industrie 4.0 scenarios. Proceedings of the Annual Hawaii International Conference on System Sciences, 2016-March, 3928–3937. https://doi.org/10.1109/HICSS.2016.488
  • Jones BE, F. J. (1990). Modelling, Simulation and Identification of an Industrial Manipulator. Dublin City University.
  • Mikkelsen, J. (1998). A machine vision system controlling a Lynx arm robot along a path. University of Cape Town, South Africa.
  • Mourtzis, D., Fotia, S., Boli, N., & Vlachou, E. (2019). Modelling and quantification of industry 4.0 manufacturing complexity based on information theory: a robotics case study. International Journal of Production Research, 1–14. https://doi.org/10.1080/00207543.2019.1571686
  • Neto, P., Mendes, N., Arajo, R., Pires, J. N., & Moreira, A. P. (2012). High-level robot programming based on CAD: Dealing with unpredictable environments. Industrial Robot, 39(3), 294–303. https://doi.org/10.1108/01439911211217125
  • Niku, S. B. (2001). Introduction to Robotics: Analysis, Systems, Applications (1st ed.). Prentice Hall.
  • Rajeevlochana, C. G., Jain, A., Shah, S. V, & Saha, S. K. (2011). Recursive Robot Dynamics. In S. Bandopadhyay, S. Gurunathan, & P. Ramu (Eds.), Introduction to Robotics (pp. 1–9). Narosa Publishing House, New Delhi.
  • Rajeevlochana, C. G., & Saha, S. K. (2011, February). RoboAnalyzer: 3D model based robotic learning software. In International Conference on Multi Body Dynamics (pp. 3-13).
  • Sanfilippo, F., Hatledal, L. I., Zhang, H., Fago, M., & Pettersen, K. Y. (2015). Controlling Kuka Industrial Robots: Flexible Communication Interface JOpenShowVar. IEEE Robotics & Automation Magazine, 22(4), 96–109. https://doi.org/10.1109/MRA.2015.2482839
  • Schou, C., Damgaard, J. S., Bogh, S., & Madsen, O. (2013). Human-robot interface for instructing industrial tasks using kinesthetic teaching. 2013 44th International Symposium on Robotics, ISR 2013, 1–6. https://doi.org/10.1109/ISR.2013.6695599
  • Udai, A. D., Rajeevlochana, C. G., & Saha, S. K. (2011). Dynamic Simulation of a KUKA KR5 Industrial Robot using MATLAB SimMechanics. 15th National Conference on Machines and Mechanisms, 96, 1–8.
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Mustafa Engin 0000-0001-7247-4545

Okan Duymazlar 0000-0002-1327-7493

Dilşad Engin 0000-0003-0159-275X

Yayımlanma Tarihi 31 Aralık 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Engin, M., Duymazlar, O., & Engin, D. (2021). Robot Programming Using Model Based Design Tools. Avrupa Bilim Ve Teknoloji Dergisi(31), 861-869. https://doi.org/10.31590/ejosat.1010444