Araştırma Makalesi
BibTex RIS Kaynak Göster

Eğrisel Yüzeyli Tabakalı Kompozit Plakların Kritik Burkulma Yüklerine Etki Eden Parametrelerin Belirlenmesi

Yıl 2021, , 1077 - 1082, 30.11.2021
https://doi.org/10.31590/ejosat.1012879

Öz

Bu çalışmada eğrisel yüzeyli tabakalı kompozit plakların burkulma yükü altındaki davranışlarına etki eden parametreler incelenmiştir. Bu amaçla farklı tabaka dizilimlerine, açılarına ve geometrik özelliklere sahip tabakalı hibrit kompozitlerin kritik burkulma yüklerindeki değişim sayısal olarak araştırılmıştır. Kompozit malzeme tasarımında fiber malzemesi olarak karbon, cam ve aramid fiber tercih edilmiş ve 6 farklı dizilim uygulanmıştır. Kumaş türünün yanı sıra oryantasyon açılarının kritik burkulma yükü üzerindeki etkisini inceleyebilmek için 0°, 45°, -45° ve 90 ° açılarına sahip tek yönlü kumaşlar 6 farklı şekilde kullanılmıştır. Eğrisel yüzeyli kompozit plaklarda geometrik özelliklerin burkulma özellikleri üzerindeki etkisini gözlemleyebilmek için numuneler 4 farklı eğrilik yarıçapı ve 2 farklı eğrilik açısında tasarlanmıştır. Modelleme ANSYS paket programı kullanılarak yapılmıştır. Yapılan analizler sonucunda kritik burkulma yükleri belirlenerek kıyaslanmıştır. Eğrisel yüzeyli kompozit plaklarda eğrilik yarıçapı ve eğrilik açısı arttıkça kritik burkulma yükünün arttığı tespit edilmiştir.

Kaynakça

  • S. Sajan and D. Philip Selvaraj, “A review on polymer matrix composite materials and their applications,” Mater. Today Proc., vol. 47, pp. 5493–5498, 2021, doi: https://doi.org/10.1016/j.matpr.2021.08.034.
  • J. Jeremy Jeba Samuel, R. Ramadoss, K. N. Gunasekaran, K. Logesh, S. J. P. Gnanaraj, and A. A. Munaf, “Studies on mechanical properties and characterization of carbon fiber reinforced hybrid composite for aero space application,” Mater. Today Proc., 2021, doi: https://doi.org/10.1016/j.matpr.2021.05.304.
  • M. Naito et al., “Applicability of composite materials for space radiation shielding of spacecraft,” Life Sci. Sp. Res., vol. 31, pp. 71–79, 2021, doi: https://doi.org/10.1016/j.lssr.2021.08.004.
  • M. S. Sarfraz, H. Hong, and S. S. Kim, “Recent developments in the manufacturing technologies of composite components and their cost-effectiveness in the automotive industry: A review study,” Compos. Struct., vol. 266, p. 113864, 2021, doi: https://doi.org/10.1016/j.compstruct.2021.113864.
  • N. Gort, O. Döbrich, S. Grieder, M. Küng, and C. Brauner, “Experimental analysis of orthotropic strength properties of non-crimp fabric based composites for automotive leaf spring applications,” Compos. Struct., vol. 271, p. 114154, 2021, doi: https://doi.org/10.1016/j.compstruct.2021.114154.
  • Y. M. Zhu, “Performance of Ti2AlC composite material in sports equipment,” Sci. Technol. Mater., vol. 30, no. 2, pp. 99–102, 2018, doi: https://doi.org/10.1016/j.stmat.2018.02.004.
  • C. Yanen and M. Y. Solmaz, “Ballistic tests of lightweight hybrid composites for body armor,” Mater. Test., vol. 61, no. 5, pp. 425–433, 2019, doi: doi:10.3139/120.111336.
  • M. Helal and E. Fathallah, “Finite element analysis and design optimization of a non-circular sandwich composite deep submarine pressure hull,” Mater. Test., vol. 62, no. 10, pp. 1025–1032, 2020, doi: doi:10.3139/120.111580.
  • M. P. Westman, L. S. Fifield, K. L. Simmons, S. Laddha, and T. A. Kafentzis, “Natural fiber composites: a review,” 2010. S. D. S. Kopparthy and A. N. Netravali, “Review: Green composites for structural applications,” Compos. Part C Open Access, vol. 6, p. 100169, 2021, doi: https://doi.org/10.1016/j.jcomc.2021.100169.
  • Z. Zhang, K. Fu, and Y. Li, “Improved interlaminar fracture toughness of carbon fiber/epoxy composites with a multiscale cellulose fiber interlayer,” Compos. Commun., vol. 27, p. 100898, 2021, doi: https://doi.org/10.1016/j.coco.2021.100898.
  • M. Y. Mahmoud Zaghloul, M. M. Yousry Zaghloul, and M. M. Yousry Zaghloul, “Developments in polyester composite materials – An in-depth review on natural fibres and nano fillers,” Compos. Struct., vol. 278, p. 114698, 2021, doi: https://doi.org/10.1016/j.compstruct.2021.114698.
  • R. Orhan, E. Aydoğmuş, S. Topuz, and H. Arslanoğlu, “Investigation of thermo-mechanical characteristics of borax reinforced polyester composites,” J. Build. Eng., vol. 42, p. 103051, 2021, doi: https://doi.org/10.1016/j.jobe.2021.103051.
  • Y. E. Erdoğdu, E. E. Korkmaz, and Ş. Temiz, “Effect of graphene nanoplatelet filling on mechanical properties of natural fiber reinforced polymer composites,” Mater. Test., vol. 63, no. 4, pp. 322–328, 2021, doi: doi:10.1515/mt-2020-0046.
  • D. May, C. Goergen, and K. Friedrich, “Multifunctionality of polymer composites based on recycled carbon fibers: A review,” Adv. Ind. Eng. Polym. Res., vol. 4, no. 2, pp. 70–81, 2021, doi: https://doi.org/10.1016/j.aiepr.2021.01.001.
  • J. Du et al., “A review on machining of carbon fiber reinforced ceramic matrix composites,” Ceram. Int., vol. 45, no. 15, pp. 18155–18166, 2019, doi: https://doi.org/10.1016/j.ceramint.2019.06.112.
  • P. S. Hatti, S. K. L., A. B. Somanakatti, and R. M., “Investigation on tensile behavior of glass-fiber reinforced polymer matrix composite with varying orientations of fibers,” Mater. Today Proc., 2021, doi: https://doi.org/10.1016/j.matpr.2021.08.196.
  • B. Zhang, L. Jia, M. Tian, N. Ning, L. Zhang, and W. Wang, “Surface and interface modification of aramid fiber and its reinforcement for polymer composites: A review,” Eur. Polym. J., vol. 147, p. 110352, 2021, doi: https://doi.org/10.1016/j.eurpolymj.2021.110352.
  • E. Uğur Yüncüoğlu, S. Turgut Ince, and E. Bağcı, “Strength of carbon fiber/epoxy in sea water,” Mater. Test., vol. 63, no. 9, pp. 811–815, 2021, doi: doi:10.1515/mt-2021-0005.
  • A. Julias, S. Mohmeed, and V. Murali, “Effect of delamination on buckling strength of unidirectional glass-carbon hybrid laminates,” Indian J. Eng. Mater. Sci., vol. 21, pp. 23–29, Mar. 2014.
  • H. Aljibori et al., “Load–displacement behavior of glass fiber/epoxy composite plates with circular cut-outs subjected to compressive load,” Mater. Des. - MATER Des., vol. 31, pp. 466–474, Jan. 2010, doi: 10.1016/j.matdes.2009.07.005.
  • A. K. R, “Buckling Analysis of Woven Glass epoxy Laminated Composite Plate,” National Institute of Technology Rourkela, 2009. S. Khodabakhshpour-Bariki, R.-A. Jafari-Talookolaei, M. Attar, and A. Eyvazian, “Free vibration analysis of composite curved beams with stepped cross-section,” Structures, vol. 33, pp. 4828–4842, 2021, doi: https://doi.org/10.1016/j.istruc.2021.07.041.
  • B. Beylergil, M. Tanoğlu, and E. Aktaş, “Mode-I fracture toughness of carbon fiber/epoxy composites interleaved by aramid nonwoven veils,” Steel Compos. Struct., vol. 31, pp. 113–123, Apr. 2019, doi: 10.12989/scs.2019.31.2.113.

Determination of Parameters Affecting Critical Buckling Loads of Curved Laminated Composite Plates

Yıl 2021, , 1077 - 1082, 30.11.2021
https://doi.org/10.31590/ejosat.1012879

Öz

In this study, parameters affecting the behavior of curved laminated composite plates under buckling load were investigated. For this purpose, the change in critical buckling loads of layered hybrid composites with different layer arrangements, angles and geometrical properties was investigated numerically. In the composite material design, carbon, glass and aramid fiber were preferred as fiber material and 6 different arrays were applied. In order to examine the effect of orientation angles on critical buckling load as well as fabric type, unidirectional fabrics with 0°, 45°, -45° and 90° angles were used in 6 different ways. In order to observe the effect of geometric properties on buckling properties of curved laminated composite plates, the samples were designed with 4 different radius of curvature and 2 different curvature angles. Modeling was done using ANSYS program. As a result of the analysis, critical buckling loads were determined and compared. It has been determined that the critical buckling load increases as the radius of curvature and angle of curvature increase in curved laminated composite plates.

Kaynakça

  • S. Sajan and D. Philip Selvaraj, “A review on polymer matrix composite materials and their applications,” Mater. Today Proc., vol. 47, pp. 5493–5498, 2021, doi: https://doi.org/10.1016/j.matpr.2021.08.034.
  • J. Jeremy Jeba Samuel, R. Ramadoss, K. N. Gunasekaran, K. Logesh, S. J. P. Gnanaraj, and A. A. Munaf, “Studies on mechanical properties and characterization of carbon fiber reinforced hybrid composite for aero space application,” Mater. Today Proc., 2021, doi: https://doi.org/10.1016/j.matpr.2021.05.304.
  • M. Naito et al., “Applicability of composite materials for space radiation shielding of spacecraft,” Life Sci. Sp. Res., vol. 31, pp. 71–79, 2021, doi: https://doi.org/10.1016/j.lssr.2021.08.004.
  • M. S. Sarfraz, H. Hong, and S. S. Kim, “Recent developments in the manufacturing technologies of composite components and their cost-effectiveness in the automotive industry: A review study,” Compos. Struct., vol. 266, p. 113864, 2021, doi: https://doi.org/10.1016/j.compstruct.2021.113864.
  • N. Gort, O. Döbrich, S. Grieder, M. Küng, and C. Brauner, “Experimental analysis of orthotropic strength properties of non-crimp fabric based composites for automotive leaf spring applications,” Compos. Struct., vol. 271, p. 114154, 2021, doi: https://doi.org/10.1016/j.compstruct.2021.114154.
  • Y. M. Zhu, “Performance of Ti2AlC composite material in sports equipment,” Sci. Technol. Mater., vol. 30, no. 2, pp. 99–102, 2018, doi: https://doi.org/10.1016/j.stmat.2018.02.004.
  • C. Yanen and M. Y. Solmaz, “Ballistic tests of lightweight hybrid composites for body armor,” Mater. Test., vol. 61, no. 5, pp. 425–433, 2019, doi: doi:10.3139/120.111336.
  • M. Helal and E. Fathallah, “Finite element analysis and design optimization of a non-circular sandwich composite deep submarine pressure hull,” Mater. Test., vol. 62, no. 10, pp. 1025–1032, 2020, doi: doi:10.3139/120.111580.
  • M. P. Westman, L. S. Fifield, K. L. Simmons, S. Laddha, and T. A. Kafentzis, “Natural fiber composites: a review,” 2010. S. D. S. Kopparthy and A. N. Netravali, “Review: Green composites for structural applications,” Compos. Part C Open Access, vol. 6, p. 100169, 2021, doi: https://doi.org/10.1016/j.jcomc.2021.100169.
  • Z. Zhang, K. Fu, and Y. Li, “Improved interlaminar fracture toughness of carbon fiber/epoxy composites with a multiscale cellulose fiber interlayer,” Compos. Commun., vol. 27, p. 100898, 2021, doi: https://doi.org/10.1016/j.coco.2021.100898.
  • M. Y. Mahmoud Zaghloul, M. M. Yousry Zaghloul, and M. M. Yousry Zaghloul, “Developments in polyester composite materials – An in-depth review on natural fibres and nano fillers,” Compos. Struct., vol. 278, p. 114698, 2021, doi: https://doi.org/10.1016/j.compstruct.2021.114698.
  • R. Orhan, E. Aydoğmuş, S. Topuz, and H. Arslanoğlu, “Investigation of thermo-mechanical characteristics of borax reinforced polyester composites,” J. Build. Eng., vol. 42, p. 103051, 2021, doi: https://doi.org/10.1016/j.jobe.2021.103051.
  • Y. E. Erdoğdu, E. E. Korkmaz, and Ş. Temiz, “Effect of graphene nanoplatelet filling on mechanical properties of natural fiber reinforced polymer composites,” Mater. Test., vol. 63, no. 4, pp. 322–328, 2021, doi: doi:10.1515/mt-2020-0046.
  • D. May, C. Goergen, and K. Friedrich, “Multifunctionality of polymer composites based on recycled carbon fibers: A review,” Adv. Ind. Eng. Polym. Res., vol. 4, no. 2, pp. 70–81, 2021, doi: https://doi.org/10.1016/j.aiepr.2021.01.001.
  • J. Du et al., “A review on machining of carbon fiber reinforced ceramic matrix composites,” Ceram. Int., vol. 45, no. 15, pp. 18155–18166, 2019, doi: https://doi.org/10.1016/j.ceramint.2019.06.112.
  • P. S. Hatti, S. K. L., A. B. Somanakatti, and R. M., “Investigation on tensile behavior of glass-fiber reinforced polymer matrix composite with varying orientations of fibers,” Mater. Today Proc., 2021, doi: https://doi.org/10.1016/j.matpr.2021.08.196.
  • B. Zhang, L. Jia, M. Tian, N. Ning, L. Zhang, and W. Wang, “Surface and interface modification of aramid fiber and its reinforcement for polymer composites: A review,” Eur. Polym. J., vol. 147, p. 110352, 2021, doi: https://doi.org/10.1016/j.eurpolymj.2021.110352.
  • E. Uğur Yüncüoğlu, S. Turgut Ince, and E. Bağcı, “Strength of carbon fiber/epoxy in sea water,” Mater. Test., vol. 63, no. 9, pp. 811–815, 2021, doi: doi:10.1515/mt-2021-0005.
  • A. Julias, S. Mohmeed, and V. Murali, “Effect of delamination on buckling strength of unidirectional glass-carbon hybrid laminates,” Indian J. Eng. Mater. Sci., vol. 21, pp. 23–29, Mar. 2014.
  • H. Aljibori et al., “Load–displacement behavior of glass fiber/epoxy composite plates with circular cut-outs subjected to compressive load,” Mater. Des. - MATER Des., vol. 31, pp. 466–474, Jan. 2010, doi: 10.1016/j.matdes.2009.07.005.
  • A. K. R, “Buckling Analysis of Woven Glass epoxy Laminated Composite Plate,” National Institute of Technology Rourkela, 2009. S. Khodabakhshpour-Bariki, R.-A. Jafari-Talookolaei, M. Attar, and A. Eyvazian, “Free vibration analysis of composite curved beams with stepped cross-section,” Structures, vol. 33, pp. 4828–4842, 2021, doi: https://doi.org/10.1016/j.istruc.2021.07.041.
  • B. Beylergil, M. Tanoğlu, and E. Aktaş, “Mode-I fracture toughness of carbon fiber/epoxy composites interleaved by aramid nonwoven veils,” Steel Compos. Struct., vol. 31, pp. 113–123, Apr. 2019, doi: 10.12989/scs.2019.31.2.113.
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Cenk Yanen 0000-0002-5092-8734

Murat Can Tanıi Bu kişi benim 0000-0001-6339-851X

Murat Yavuz Solmaz 0000-0001-6394-0313

Yayımlanma Tarihi 30 Kasım 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Yanen, C., Tanıi, M. C., & Solmaz, M. Y. (2021). Eğrisel Yüzeyli Tabakalı Kompozit Plakların Kritik Burkulma Yüklerine Etki Eden Parametrelerin Belirlenmesi. Avrupa Bilim Ve Teknoloji Dergisi(28), 1077-1082. https://doi.org/10.31590/ejosat.1012879