Araştırma Makalesi
BibTex RIS Kaynak Göster

Yapı Malzemelerine Sürdürülebilir Mimarlık Bağlamında Bütüncül Bir Bakış: Duvar Malzemelerinin Çevresel Etkilerinin ve Enerji Performansının Belirlenmesi

Yıl 2021, , 583 - 593, 31.12.2021
https://doi.org/10.31590/ejosat.1015367

Öz

Yapı sektörü malzeme ve enerji kaynaklarının büyük bir kısmını tüketirken, sektörün çevreye etkileri de tüketimle aynı oranda gerçekleşmektedir. Bu bağlamda, yapı malzemelerinin sürdürülebilirlik bağlamında ele alınması durumunda, hem enerji performansı hem de çevreye etkilerini ele alan bütüncül bir bakış açısıyla irdelenmesi, yapının tasarım evresinde gerçekleşen malzeme seçiminin daha doğru ve rasyonel olması için önemlidir. Çalışma kapsamında duvar konstrüksiyonlarında kullanılan tuğla, gazbeton ve bims bloğun çevresel etkileri ve yapının kullanım evresindeki enerji performasına ve kabuğun ısıl kütle özelliğine etkileri Safranbolu’da inşa edilmiş bir toplu konut projesi üzerinden irdelenmiş ve duvar malzemeleri sürdürülebilir mimarlık bağlamında bütüncül bir bakış açısıyla ele alınmıştır. Çalışma sonucunda, tuğlanın gazbeton ve bims bloğa göre üretim sürecindeki yüksek ısı enerjisi gereksinimi nedeniyle çevresel etkileri daha fazla olmasına karşın yapının enerji performansını ve kabuğun ısı depolama kapasitesini artırdığı tespit edilmiştir.

Kaynakça

  • Alkaya, E., Böğürcü, M. & Ulutai, F. (2012). Yaşam Döngüsü Analizi ve Bina Isı Yalıtım Malzemeleri İçin Uygulamalar. Çevre Bilim & Teknoloji, 3(4) 4, 261-274.
  • Ardente, F., Beccali, M., Cellura, M., & Mistretta, M. (2008). Building energy performance: A LCA case study of kenaf-fibres insulation board. Energy and Buildings, 40(1), 1–10. https://doi.org/10.1016/j.enbuild.2006.12.009
  • Ata-Ali, N., Penadés-Plà, V., Martínez-Muñoz, D., & Yepes, V. (2021). Recycled versus non-recycled insulation alternatives: LCA analysis for different climatic conditions in Spain. Resources, Conservation and Recycling, 175. https://doi.org/10.1016/j.resconrec.2021.105838
  • Bai, T., Mao, B., Chen, A., Li, Y., Wu, S., Hu, Z., & Lin, Z. (2021). Investigation of low-temperature construction additives (LCAs) effects on the technical properties of asphalt binder. Construction and Building Materials, 304(February). https://doi.org/10.1016/j.conbuildmat.2021.124634
  • Benli̇ Yıldız, N., Arslan, H., & Yılmaz, E. (2020). Life Cycle Assessment of Building Materials: Literature Rewiew. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 8, 210–219.
  • Bueno, C., & Fabricio, M. M. (2018). Comparative analysis between a complete LCA study and results from a BIM-LCA plug-in. Automation in Construction, 90 (January 2016), 188–200. https://doi.org/10.1016/j.autcon.2018.02.028
  • Buyle, M., Braet, J., & Audenaert, A., (2013). İnşaat Sektöründe Yaşam Döngüsü Değerlendirmesi: Bir İnceleme. Yenilenebilir ve Sürdürülebilir Enerjiler Üzerine İncelemeler, Antwerp, Belçika, vol. 26, ss. 379– 388, Oct.
  • Calkins, M. (2009). Materials for sustainable sites: a complete guide to the evaluation, selection, and use of sustainable construction materials. Hoboken, NJ: John Wiley & Sons. 457 p.
  • Chàfer, M., Pérez, G., Coma, J., & Cabeza, L. F. (2021). A comparative life cycle assessment between green walls and green facades in the Mediterranean continental climate. Energy and Buildings, 249. https://doi.org/10.1016/j.enbuild.2021.111236
  • Chau, C. K., Leung, T. M., & Ng, W. Y. (2015). A review on Life Cycle Assessment, Life Cycle Energy Assessment and Life Cycle Carbon Emissions Assessment on buildings. 143, 395–413. https://doi.org/10.1016/j.apenergy.2015.01.023
  • Colangelo, F., Farina, I., Travaglioni, M., Salzano, C., Cioffi, R., & Petrillo, A. (2021). Eco-efficient industrial waste recycling for the manufacturing of fibre reinforced innovative geopolymer mortars: Integrated waste management and green product development through LCA. Journal of Cleaner Production, 312(May), 127777. https://doi.org/10.1016/j.jclepro.2021.127777
  • Çiftçi, H., & Arslanoğlu, H. (2021)Çinko Üretimi Atık Kekinin Fosfat Adsorpsiyon Özelliklerinin İncelenmesi. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 8(1), 251-262. https://doi.org/10.35193/bseufbd.878902
  • Ding, G. K. C. (2013). Life cycle assessment (LCA) of sustainable building materials: An overview. Eco-Efficient Construction and Building Materials: Life Cycle Assessment (LCA), Eco-Labelling and Case Studies, 38–62. https://doi.org/10.1533/9780857097729.1.38
  • DMİ, “Stratosferik Ozon Tükenimi”, http://dmi.gov.tr (2010).
  • Dylewski, R., & Adamczyk, J. (2013). Life cycle assessment (LCA) of building thermal insulation materials. In Eco-Efficient Construction and Building Materials: Life Cycle Assessment (LCA), Eco-Labelling and Case Studies. Woodhead Publishing Limited. https://doi.org/10.1533/9780857097729.2.267
  • European Commission Energy Department (2021) "In focus: Energy efficiency in buildings", [pdf] Energy Department, Brussels, Available at: https://ec.europa.eu/info/sites/default/files/energy_climate_change_environment/events/documents/in_focus_energy_efficiency_in_buildings_en.pdf [Erişim tarihi: 25.09.2021]
  • Fan, R., Chen, C. L., Lin, J. Y., Tzeng, J. H., Huang, C. P., Dong, C. & Huang, C. P. (2019). Adsorption characteristics of ammonium ion onto hydrous biochars in dilute aqueous solutions. Bioresource technology, 272, 465-472. https://doi.org/10.1016/j.biortech.2018.10.064
  • Hasik, V., Escott, E., Bates, R., Carlisle, S., Faircloth, B., & Bilec, M. M. (2019). Comparative whole-building life cycle assessment of renovation and new construction. Building and Environment, 161(May), 106218. https://doi.org/10.1016/j.buildenv.2019.106218
  • Hesser, F. (2015). Environmental advantage by choice: Ex-ante LCA for a new Kraft pulp fibre reinforced polypropylene composite in comparison to reference materials. Composites Part B: Engineering, 79, 197–203. https://doi.org/10.1016/j.compositesb.2015.04.038
  • Hossain, M. U., Poon, C. S., Lo, I. M. C., & Cheng, J. C. P. (2017). Comparative LCA on using waste materials in the cement industry: A Hong Kong case study. Resources, Conservation and Recycling, 120, 199–208. https://doi.org/10.1016/j.resconrec.2016.12.012
  • Ingrao, C., Messineo, A., Beltramo, R., Yigitcanlar, T., & Ioppolo, G. (2018). How can life cycle thinking support sustainability of buildings? Investigating life cycle assessment applications for energy efficiency and environmental performance. Journal of Cleaner Production, 201, 556–569. https://doi.org/10.1016/j.jclepro.2018.08.080
  • Jullien, A., Proust, C., & Yazoghli-Marzouk, O. (2019). LCA of alternative granular materials – Assessment of ecotoxicity and toxicty for road case studies. Construction and Building Materials, 227, 116737. https://doi.org/10.1016/j.conbuildmat.2019.116737
  • Katsoyiannis, A.. Leva, A. P & Kotzias, D. (2006)Determination of Volatile Organic Compounds Emitted from Household Products. The Case of Velvet Carpets Fresenius Environ. Bull., 15, (8b) 943–949, 2006.
  • Kondalkar, M., Fegade, U., Attarde, S. & Ingle, S. (2019). Phosphate removal, mechanism, and adsorption properties of Fe-Mn-Zn oxide trimetal alloy nanocomposite fabricated via co-precipitation method. Separation Science and Technology, 54(16), 2682-2694. https://doi.org/10.1080/01496395.2018.1550513
  • Konuklu, Y., & Paksoy, H. Ö. (2011). Faz Deği̇ştı̇ren Maddeler İle Binalalarda Enerji Verimliliği. X. Ulusal Tesi̇sat Mühendi̇sli̇ği̇ Kongresi̇, 919–930.
  • La Rosa, A. D., Greco, S., Tosto, C., & Cicala, G. (2021). LCA and LCC of a chemical recycling process of waste CF-thermoset composites for the production of novel CF-thermoplastic composites. Open loop and closed loop scenarios. Journal of Cleaner Production, 304, 127158. https://doi.org/10.1016/j.jclepro.2021.127158
  • Llantoy, N., Chàfer, M., & Cabeza, L. F. (2020). A comparative life cycle assessment (LCA) of different insulation materials for buildings in the continental Mediterranean climate. Energy and Buildings, 225, 110323. https://doi.org/10.1016/j.enbuild.2020.110323
  • Manjunatha, M., Preethi, S., Malingaraya, Mounika, H. G., Niveditha, K. N., & Ravi. (2021). Life cycle assessment (LCA) of concrete prepared with sustainable cement-based materials. Materials Today: Proceedings, 47, 3637–3644. https://doi.org/10.1016/j.matpr.2021.01.248
  • Marcelino-Sadaba, S., Kinuthia, J., Oti, J., & Seco Meneses, A. (2017). Challenges in Life Cycle Assessment (LCA) of stabilised clay-based construction materials. Applied Clay Science, 144(May), 121–130. https://doi.org/10.1016/j.clay.2017.05.012
  • Monahan, J., & Powell, J. C. (2011). An embodied carbon and energy analysis of modern methods of construction in housing: A case study using a lifecycle assessment framework. Energy and Buildings, 43(1), 179–188. https://doi.org/10.1016/j.enbuild.2010.09.005
  • Morris, F., Allen, S., & Hawkins, W. (2021). On the embodied carbon of structural timber versus steel, and the influence of LCA methodology. Building and Environment, 206(May), 108285. https://doi.org/10.1016/j.buildenv.2021.108285
  • Murmu ve Patel, (2018). Sürdürülebilir Tuğla Üretimine Doğru: Genel Bakış Konstr. İnşa Etmek. Anne, 165, 112-125, 10.1016/j.conbuildmat.2018.01.038
  • Najjar, M., Figueiredo, K., Palumbo, M., & Haddad, A. (2017). Integration of BIM and LCA: Evaluating the environmental impacts of building materials at an early stage of designing a typical office building. Journal of Building Engineering, 14(March), 115–126. https://doi.org/10.1016/j.jobe.2017.10.005
  • Oztas Karaman S., & Tanaçan, L. (2015). Verification of Life Cycle Impact Assessment Model developed for Turkish Building Materials Sector. The 2nd International International Sustainable Building Symposium, 866–874.
  • Özcan, H.K. , Şahin, Ü., Bayat, C. & Uçan, O.N (2006). İstanbul İli Tropsoferik Ozon (O3) Konsantrasyonlarının Hücresel Yapay Sinir Ağ Yöntemiyle Modellenmesi. Gazi Üniv. Müh. Mim. Fak. Der. 21(2), 239-245
  • Özdemir, A. (2019). Eskı̇şehı̇r Teknı̇k Ünı̇versı̇tesı̇ Bı̇lı̇m ve Teknolojı̇ Dergı̇sı̇ B- Teorı̇k Bı̇lı̇mler. 7(2), 166–183. https://doi.org/10.20290/estubtdb.517254
  • Özutku, O., & Karakuş, C. Binalarda Isı Yalıtım Yolu İle Enerji Tasarrufunun İklimlendirme Açısından İncelenmesi Ve Optimum Cam Kaplama Alanı Belirlenmesi. http://www1.mmo.org.tr/resimler/dosya_ekler/f26d91da3dfa79e_ek.pdf
  • Pannier, M. L., Lemoine, C., Amiel, M., Boileau, H., Buhé, C., & Raymond, R. (2021). Multidisciplinary post-occupancy evaluation of a multifamily house: An example linking sociological, energy and LCA studies. Journal of Building Engineering, 37(July 2020). https://doi.org/10.1016/j.jobe.2020.102139
  • Peuportier, B., Thiers, S., & Guiavarch, A. (2013). Eco-design of buildings using thermal simulation and life cycle assessment. Journal of Cleaner Production, 39, 73–78. https://doi.org/10.1016/j.jclepro.2012.08.041
  • Rajagopalan, N., Bilec, M. M., & Landis, A. E. (2010). Residential life cycle assessment modeling: Comparative case study of insulating concrete forms and traditional building materials. Journal of Green Building, 5(3), 95–106. https://doi.org/10.3992/jgb.5.3.95
  • Raposo, C., Rodrigues, F., & Rodrigues, H. (2019). BIM-based LCA assessment of seismic strengthening solutions for reinforced concrete precast industrial buildings. Innovative Infrastructure Solutions, 4(1), 1–10. https://doi.org/10.1007/s41062-019-0239-7
  • Salazar, J. (2013). Life cycle assessment (LCA) of windows and window materials. Eco-Efficient Construction and Building Materials: Life Cycle Assessment (LCA), Eco-Labelling and Case Studies, 502–527. https://doi.org/10.1533/9780857097729.3.502
  • Selici. T., Utlu Z. ve İlten N. (2005). Enerji Kullanımının Çevresel Etkileri Ve Sürdürülebilir Gelişme Açısından Değerlendirilmesi.
  • Sezer, F. Ş., & Dilmaç, Ş. (2014). Farklı Duvar Malzemesi ve Yalıtım Uygulamalarının Isıl Davranışlarının Deneysel Olarak İncelenmesi. Experimental Study on the Effects of Wall Materials and Insulation Conditions on the Thermal Behavior (Vol. 29, Issue 2). https://dergipark.org.tr/tr/download/article-file/211241
  • Thiel, C., Stengel, T., & Gehlen, C. (2013). Life cycle assessment (LCA) of road pavement materials. In Eco-Efficient Construction and Building Materials: Life Cycle Assessment (LCA), Eco-Labelling and Case Studies. https://doi.org/10.1533/9780857097729.2.368
  • Tindale, A. (2005). DesignBuilder Software, Retrieved 29 April, 2005.
  • Tuna, M. (2015). Y.D.D. Yöntemi Kapsamında Yün Ve Plastik Esaslı Halı Kaplamalarının Çevresel Performansının Değerlendirilmesi ve İç Mekân Hava Kalitesine Etkileri. TESKON.
  • Tuna Taygun, G. (2005). Yapı Ürünlerinin Yaşam Döngüsü Değerlendirmesine Yönelik Bir Model Önerisi. Doktora Tezi, Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul, 213 s.
  • Tushar, Q., Bhuiyan, M. A., Zhang, G., & Maqsood, T. (2021). An integrated approach of BIM-enabled LCA and energy simulation: The optimized solution towards sustainable development. Journal of Cleaner Production, 289, 125622. https://doi.org/10.1016/j.jclepro.2020.125622
  • UNFCCC-United Nations Climate Change,2020). https://di.unfccc.int/detailed_data_by_party
  • URL 1 : https://passipedia.org/_media/picopen/9f_160815_phi_building_criteria_en.pdf
  • URL 2 : https://www.google.com/url?sa=i&url=https%3A%2F%2Ftwitter.com%2Femlakyonetim%2Fstatus%2F1092785294632542209%3Flang%3Dde&psig=AOvVaw0JVIoI4hYTUIyaghOXLBt7&ust=1623415462699000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCLCupISMjfECFQAAAAAdAAAAABAy
  • URL 3 : https://www.htflux.com/en/ Valencia-Barba, Yovanna E., & Gómez-Soberón, J. M. (2019). LCA Analysis of Three Types of Interior Partition Walls Used in Buildings. Proceedings, 2(22), 1595. https://doi.org/10.3390/proceedings2221595
  • Valencia-Barba, Yovanna Elena, Gómez-Soberón, J. M., Gómez-Soberón, M. C., & Rojas-Valencia, M. N. (2021). Life cycle assessment of interior partition walls: Comparison between functionality requirements and best environmental performance. Journal of Building Engineering, 44. https://doi.org/10.1016/j.jobe.2021.102978
  • Yıldız, A., Gürlek, G., Erkek, M., & Özbalta, N. (2008). Yapılarda Isı Yalıtım Kalınlığının Ekonomik ve Çevresel Analizi. Isı Bilimi ve Tekniği Dergisi, 28(2), 25-34.
  • Yılmaz, E., Arslan, H., & Bideci, A. (2019). Environmental performance analysis of insulated composite facade panels using life cycle assessment (LCA). Construction and Building Materials, 202, 806–813. https://doi.org/10.1016/j.conbuildmat.2019.01.057
  • Yildiz, Y., Özbalta, T. G., & Arsan, Z. D. (2011). Farklı Cam Türleri ve Yönlere Göre Pencere/Duvar Alanı Oranının Bina Enerji Performansına Etkisi: Eğitim Binası, İzmir. Megaron, 6(1). https://jag.journalagent.com/megaron/pdfs/MEGARON_6_1_30_38.pdf
  • Wu, T., Gong, M., & Xiao, J. (2020). Preliminary sensitivity study on an life cycle assessment (LCA) tool via assessing a hybrid timber building. Journal of Bioresources and Bioproducts, 5(2), 108–113. https://doi.org/10.1016/j.jobab.2020.04.004

A Holistic View on Building Materials in the Context of Sustainable Architecture: Determining the Environmental Impact and Energy Performance of Wall Materials

Yıl 2021, , 583 - 593, 31.12.2021
https://doi.org/10.31590/ejosat.1015367

Öz

While the construction sector consumes a large part of material and energy resources, its effects on the environment occur at the same rate as consumption. In this context, if building materials are handled in the context of sustainability, it is important to examine both energy performance and environmental effects from a holistic perspective, so that the material selection realized during the design phase of the building is more accurate and rational. Within the scope of the study, the environmental effects of brick, aerated concrete and pumice block used in wall constructions and their effects on the energy performance of the building and the thermal mass of the shell were examined through a mass housing project built in Safranbolu and the wall materials were discussed from a holistic perspective in the context of sustainable architecture. As a result of the study, it has been determined that although the brick has more environmental effects due to the high heat energy requirement in the production process compared to aerated concrete and pumice blocks, it increases the energy performance of the building and the heat storage capacity of the shell.

Kaynakça

  • Alkaya, E., Böğürcü, M. & Ulutai, F. (2012). Yaşam Döngüsü Analizi ve Bina Isı Yalıtım Malzemeleri İçin Uygulamalar. Çevre Bilim & Teknoloji, 3(4) 4, 261-274.
  • Ardente, F., Beccali, M., Cellura, M., & Mistretta, M. (2008). Building energy performance: A LCA case study of kenaf-fibres insulation board. Energy and Buildings, 40(1), 1–10. https://doi.org/10.1016/j.enbuild.2006.12.009
  • Ata-Ali, N., Penadés-Plà, V., Martínez-Muñoz, D., & Yepes, V. (2021). Recycled versus non-recycled insulation alternatives: LCA analysis for different climatic conditions in Spain. Resources, Conservation and Recycling, 175. https://doi.org/10.1016/j.resconrec.2021.105838
  • Bai, T., Mao, B., Chen, A., Li, Y., Wu, S., Hu, Z., & Lin, Z. (2021). Investigation of low-temperature construction additives (LCAs) effects on the technical properties of asphalt binder. Construction and Building Materials, 304(February). https://doi.org/10.1016/j.conbuildmat.2021.124634
  • Benli̇ Yıldız, N., Arslan, H., & Yılmaz, E. (2020). Life Cycle Assessment of Building Materials: Literature Rewiew. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 8, 210–219.
  • Bueno, C., & Fabricio, M. M. (2018). Comparative analysis between a complete LCA study and results from a BIM-LCA plug-in. Automation in Construction, 90 (January 2016), 188–200. https://doi.org/10.1016/j.autcon.2018.02.028
  • Buyle, M., Braet, J., & Audenaert, A., (2013). İnşaat Sektöründe Yaşam Döngüsü Değerlendirmesi: Bir İnceleme. Yenilenebilir ve Sürdürülebilir Enerjiler Üzerine İncelemeler, Antwerp, Belçika, vol. 26, ss. 379– 388, Oct.
  • Calkins, M. (2009). Materials for sustainable sites: a complete guide to the evaluation, selection, and use of sustainable construction materials. Hoboken, NJ: John Wiley & Sons. 457 p.
  • Chàfer, M., Pérez, G., Coma, J., & Cabeza, L. F. (2021). A comparative life cycle assessment between green walls and green facades in the Mediterranean continental climate. Energy and Buildings, 249. https://doi.org/10.1016/j.enbuild.2021.111236
  • Chau, C. K., Leung, T. M., & Ng, W. Y. (2015). A review on Life Cycle Assessment, Life Cycle Energy Assessment and Life Cycle Carbon Emissions Assessment on buildings. 143, 395–413. https://doi.org/10.1016/j.apenergy.2015.01.023
  • Colangelo, F., Farina, I., Travaglioni, M., Salzano, C., Cioffi, R., & Petrillo, A. (2021). Eco-efficient industrial waste recycling for the manufacturing of fibre reinforced innovative geopolymer mortars: Integrated waste management and green product development through LCA. Journal of Cleaner Production, 312(May), 127777. https://doi.org/10.1016/j.jclepro.2021.127777
  • Çiftçi, H., & Arslanoğlu, H. (2021)Çinko Üretimi Atık Kekinin Fosfat Adsorpsiyon Özelliklerinin İncelenmesi. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 8(1), 251-262. https://doi.org/10.35193/bseufbd.878902
  • Ding, G. K. C. (2013). Life cycle assessment (LCA) of sustainable building materials: An overview. Eco-Efficient Construction and Building Materials: Life Cycle Assessment (LCA), Eco-Labelling and Case Studies, 38–62. https://doi.org/10.1533/9780857097729.1.38
  • DMİ, “Stratosferik Ozon Tükenimi”, http://dmi.gov.tr (2010).
  • Dylewski, R., & Adamczyk, J. (2013). Life cycle assessment (LCA) of building thermal insulation materials. In Eco-Efficient Construction and Building Materials: Life Cycle Assessment (LCA), Eco-Labelling and Case Studies. Woodhead Publishing Limited. https://doi.org/10.1533/9780857097729.2.267
  • European Commission Energy Department (2021) "In focus: Energy efficiency in buildings", [pdf] Energy Department, Brussels, Available at: https://ec.europa.eu/info/sites/default/files/energy_climate_change_environment/events/documents/in_focus_energy_efficiency_in_buildings_en.pdf [Erişim tarihi: 25.09.2021]
  • Fan, R., Chen, C. L., Lin, J. Y., Tzeng, J. H., Huang, C. P., Dong, C. & Huang, C. P. (2019). Adsorption characteristics of ammonium ion onto hydrous biochars in dilute aqueous solutions. Bioresource technology, 272, 465-472. https://doi.org/10.1016/j.biortech.2018.10.064
  • Hasik, V., Escott, E., Bates, R., Carlisle, S., Faircloth, B., & Bilec, M. M. (2019). Comparative whole-building life cycle assessment of renovation and new construction. Building and Environment, 161(May), 106218. https://doi.org/10.1016/j.buildenv.2019.106218
  • Hesser, F. (2015). Environmental advantage by choice: Ex-ante LCA for a new Kraft pulp fibre reinforced polypropylene composite in comparison to reference materials. Composites Part B: Engineering, 79, 197–203. https://doi.org/10.1016/j.compositesb.2015.04.038
  • Hossain, M. U., Poon, C. S., Lo, I. M. C., & Cheng, J. C. P. (2017). Comparative LCA on using waste materials in the cement industry: A Hong Kong case study. Resources, Conservation and Recycling, 120, 199–208. https://doi.org/10.1016/j.resconrec.2016.12.012
  • Ingrao, C., Messineo, A., Beltramo, R., Yigitcanlar, T., & Ioppolo, G. (2018). How can life cycle thinking support sustainability of buildings? Investigating life cycle assessment applications for energy efficiency and environmental performance. Journal of Cleaner Production, 201, 556–569. https://doi.org/10.1016/j.jclepro.2018.08.080
  • Jullien, A., Proust, C., & Yazoghli-Marzouk, O. (2019). LCA of alternative granular materials – Assessment of ecotoxicity and toxicty for road case studies. Construction and Building Materials, 227, 116737. https://doi.org/10.1016/j.conbuildmat.2019.116737
  • Katsoyiannis, A.. Leva, A. P & Kotzias, D. (2006)Determination of Volatile Organic Compounds Emitted from Household Products. The Case of Velvet Carpets Fresenius Environ. Bull., 15, (8b) 943–949, 2006.
  • Kondalkar, M., Fegade, U., Attarde, S. & Ingle, S. (2019). Phosphate removal, mechanism, and adsorption properties of Fe-Mn-Zn oxide trimetal alloy nanocomposite fabricated via co-precipitation method. Separation Science and Technology, 54(16), 2682-2694. https://doi.org/10.1080/01496395.2018.1550513
  • Konuklu, Y., & Paksoy, H. Ö. (2011). Faz Deği̇ştı̇ren Maddeler İle Binalalarda Enerji Verimliliği. X. Ulusal Tesi̇sat Mühendi̇sli̇ği̇ Kongresi̇, 919–930.
  • La Rosa, A. D., Greco, S., Tosto, C., & Cicala, G. (2021). LCA and LCC of a chemical recycling process of waste CF-thermoset composites for the production of novel CF-thermoplastic composites. Open loop and closed loop scenarios. Journal of Cleaner Production, 304, 127158. https://doi.org/10.1016/j.jclepro.2021.127158
  • Llantoy, N., Chàfer, M., & Cabeza, L. F. (2020). A comparative life cycle assessment (LCA) of different insulation materials for buildings in the continental Mediterranean climate. Energy and Buildings, 225, 110323. https://doi.org/10.1016/j.enbuild.2020.110323
  • Manjunatha, M., Preethi, S., Malingaraya, Mounika, H. G., Niveditha, K. N., & Ravi. (2021). Life cycle assessment (LCA) of concrete prepared with sustainable cement-based materials. Materials Today: Proceedings, 47, 3637–3644. https://doi.org/10.1016/j.matpr.2021.01.248
  • Marcelino-Sadaba, S., Kinuthia, J., Oti, J., & Seco Meneses, A. (2017). Challenges in Life Cycle Assessment (LCA) of stabilised clay-based construction materials. Applied Clay Science, 144(May), 121–130. https://doi.org/10.1016/j.clay.2017.05.012
  • Monahan, J., & Powell, J. C. (2011). An embodied carbon and energy analysis of modern methods of construction in housing: A case study using a lifecycle assessment framework. Energy and Buildings, 43(1), 179–188. https://doi.org/10.1016/j.enbuild.2010.09.005
  • Morris, F., Allen, S., & Hawkins, W. (2021). On the embodied carbon of structural timber versus steel, and the influence of LCA methodology. Building and Environment, 206(May), 108285. https://doi.org/10.1016/j.buildenv.2021.108285
  • Murmu ve Patel, (2018). Sürdürülebilir Tuğla Üretimine Doğru: Genel Bakış Konstr. İnşa Etmek. Anne, 165, 112-125, 10.1016/j.conbuildmat.2018.01.038
  • Najjar, M., Figueiredo, K., Palumbo, M., & Haddad, A. (2017). Integration of BIM and LCA: Evaluating the environmental impacts of building materials at an early stage of designing a typical office building. Journal of Building Engineering, 14(March), 115–126. https://doi.org/10.1016/j.jobe.2017.10.005
  • Oztas Karaman S., & Tanaçan, L. (2015). Verification of Life Cycle Impact Assessment Model developed for Turkish Building Materials Sector. The 2nd International International Sustainable Building Symposium, 866–874.
  • Özcan, H.K. , Şahin, Ü., Bayat, C. & Uçan, O.N (2006). İstanbul İli Tropsoferik Ozon (O3) Konsantrasyonlarının Hücresel Yapay Sinir Ağ Yöntemiyle Modellenmesi. Gazi Üniv. Müh. Mim. Fak. Der. 21(2), 239-245
  • Özdemir, A. (2019). Eskı̇şehı̇r Teknı̇k Ünı̇versı̇tesı̇ Bı̇lı̇m ve Teknolojı̇ Dergı̇sı̇ B- Teorı̇k Bı̇lı̇mler. 7(2), 166–183. https://doi.org/10.20290/estubtdb.517254
  • Özutku, O., & Karakuş, C. Binalarda Isı Yalıtım Yolu İle Enerji Tasarrufunun İklimlendirme Açısından İncelenmesi Ve Optimum Cam Kaplama Alanı Belirlenmesi. http://www1.mmo.org.tr/resimler/dosya_ekler/f26d91da3dfa79e_ek.pdf
  • Pannier, M. L., Lemoine, C., Amiel, M., Boileau, H., Buhé, C., & Raymond, R. (2021). Multidisciplinary post-occupancy evaluation of a multifamily house: An example linking sociological, energy and LCA studies. Journal of Building Engineering, 37(July 2020). https://doi.org/10.1016/j.jobe.2020.102139
  • Peuportier, B., Thiers, S., & Guiavarch, A. (2013). Eco-design of buildings using thermal simulation and life cycle assessment. Journal of Cleaner Production, 39, 73–78. https://doi.org/10.1016/j.jclepro.2012.08.041
  • Rajagopalan, N., Bilec, M. M., & Landis, A. E. (2010). Residential life cycle assessment modeling: Comparative case study of insulating concrete forms and traditional building materials. Journal of Green Building, 5(3), 95–106. https://doi.org/10.3992/jgb.5.3.95
  • Raposo, C., Rodrigues, F., & Rodrigues, H. (2019). BIM-based LCA assessment of seismic strengthening solutions for reinforced concrete precast industrial buildings. Innovative Infrastructure Solutions, 4(1), 1–10. https://doi.org/10.1007/s41062-019-0239-7
  • Salazar, J. (2013). Life cycle assessment (LCA) of windows and window materials. Eco-Efficient Construction and Building Materials: Life Cycle Assessment (LCA), Eco-Labelling and Case Studies, 502–527. https://doi.org/10.1533/9780857097729.3.502
  • Selici. T., Utlu Z. ve İlten N. (2005). Enerji Kullanımının Çevresel Etkileri Ve Sürdürülebilir Gelişme Açısından Değerlendirilmesi.
  • Sezer, F. Ş., & Dilmaç, Ş. (2014). Farklı Duvar Malzemesi ve Yalıtım Uygulamalarının Isıl Davranışlarının Deneysel Olarak İncelenmesi. Experimental Study on the Effects of Wall Materials and Insulation Conditions on the Thermal Behavior (Vol. 29, Issue 2). https://dergipark.org.tr/tr/download/article-file/211241
  • Thiel, C., Stengel, T., & Gehlen, C. (2013). Life cycle assessment (LCA) of road pavement materials. In Eco-Efficient Construction and Building Materials: Life Cycle Assessment (LCA), Eco-Labelling and Case Studies. https://doi.org/10.1533/9780857097729.2.368
  • Tindale, A. (2005). DesignBuilder Software, Retrieved 29 April, 2005.
  • Tuna, M. (2015). Y.D.D. Yöntemi Kapsamında Yün Ve Plastik Esaslı Halı Kaplamalarının Çevresel Performansının Değerlendirilmesi ve İç Mekân Hava Kalitesine Etkileri. TESKON.
  • Tuna Taygun, G. (2005). Yapı Ürünlerinin Yaşam Döngüsü Değerlendirmesine Yönelik Bir Model Önerisi. Doktora Tezi, Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul, 213 s.
  • Tushar, Q., Bhuiyan, M. A., Zhang, G., & Maqsood, T. (2021). An integrated approach of BIM-enabled LCA and energy simulation: The optimized solution towards sustainable development. Journal of Cleaner Production, 289, 125622. https://doi.org/10.1016/j.jclepro.2020.125622
  • UNFCCC-United Nations Climate Change,2020). https://di.unfccc.int/detailed_data_by_party
  • URL 1 : https://passipedia.org/_media/picopen/9f_160815_phi_building_criteria_en.pdf
  • URL 2 : https://www.google.com/url?sa=i&url=https%3A%2F%2Ftwitter.com%2Femlakyonetim%2Fstatus%2F1092785294632542209%3Flang%3Dde&psig=AOvVaw0JVIoI4hYTUIyaghOXLBt7&ust=1623415462699000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCLCupISMjfECFQAAAAAdAAAAABAy
  • URL 3 : https://www.htflux.com/en/ Valencia-Barba, Yovanna E., & Gómez-Soberón, J. M. (2019). LCA Analysis of Three Types of Interior Partition Walls Used in Buildings. Proceedings, 2(22), 1595. https://doi.org/10.3390/proceedings2221595
  • Valencia-Barba, Yovanna Elena, Gómez-Soberón, J. M., Gómez-Soberón, M. C., & Rojas-Valencia, M. N. (2021). Life cycle assessment of interior partition walls: Comparison between functionality requirements and best environmental performance. Journal of Building Engineering, 44. https://doi.org/10.1016/j.jobe.2021.102978
  • Yıldız, A., Gürlek, G., Erkek, M., & Özbalta, N. (2008). Yapılarda Isı Yalıtım Kalınlığının Ekonomik ve Çevresel Analizi. Isı Bilimi ve Tekniği Dergisi, 28(2), 25-34.
  • Yılmaz, E., Arslan, H., & Bideci, A. (2019). Environmental performance analysis of insulated composite facade panels using life cycle assessment (LCA). Construction and Building Materials, 202, 806–813. https://doi.org/10.1016/j.conbuildmat.2019.01.057
  • Yildiz, Y., Özbalta, T. G., & Arsan, Z. D. (2011). Farklı Cam Türleri ve Yönlere Göre Pencere/Duvar Alanı Oranının Bina Enerji Performansına Etkisi: Eğitim Binası, İzmir. Megaron, 6(1). https://jag.journalagent.com/megaron/pdfs/MEGARON_6_1_30_38.pdf
  • Wu, T., Gong, M., & Xiao, J. (2020). Preliminary sensitivity study on an life cycle assessment (LCA) tool via assessing a hybrid timber building. Journal of Bioresources and Bioproducts, 5(2), 108–113. https://doi.org/10.1016/j.jobab.2020.04.004
Toplam 58 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Feride Çiğdem Kara 0000-0002-2876-7700

Merve Tuna Kayılı 0000-0002-3803-8229

Yayımlanma Tarihi 31 Aralık 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Kara, F. Ç., & Tuna Kayılı, M. (2021). Yapı Malzemelerine Sürdürülebilir Mimarlık Bağlamında Bütüncül Bir Bakış: Duvar Malzemelerinin Çevresel Etkilerinin ve Enerji Performansının Belirlenmesi. Avrupa Bilim Ve Teknoloji Dergisi(31), 583-593. https://doi.org/10.31590/ejosat.1015367