Saponaria officinalis L. Kullanılarak Çinko Oksit Nanopartiküllerin Biyojenik Sentezi, Karakterizasyon ve Antibakteriyel Aktiviteler
Yıl 2022,
, 227 - 234, 07.05.2022
Hamdi Kamçı
,
Hasan Ufuk Çelebioğlu
,
Recep Taş
,
Ebru Köroğlu
Öz
Nanopartiküllerin sergilediği biyoaktivite, dünya çapındaki araştırmacılar tarafından büyük ilgi görmektedir. Çinko oksit nanoparçacıklarının (ZnO NP'ler) fitojenik sentezi, düşük toksisitesi ve biyolojik potansiyeli nedeniyle çevre dostu bir yaklaşım olmuştur. Günümüzde ZnONP'ler; biyomedikal, atık su arıtma, çevre iyileştirme gibi çok yönlü yapısı ve kozmetik ürünlerde uygulanabilirliği nedeniyle araştırmalar da öne çıkmaktadır. Biyosentez yöntemleriyle üretilen ZnO'nun antimikrobiyal, antioksidan ve antikanser özelliklere sahip çeşitli nanoyapılar sergilediği bilinmektedir. Bu nedenle yeşil sentez yöntemleriyle üretilen ZnONP'lerin antioksidan ve antibakteriyel aktivitesi üzerine yapılan çalışmalar her geçen gün artmaktadır. Bu çalışmada, gıda endüstrisinde, ekmek yapımında ve kozmetik sektöründe sabun yapımında kullanılan yüksek polifenol içeriğine sahip Saponaria officinalis bitkisinin kök kısımları değerlendirilerek ZnONP'lerin biyosentezi gerçekleştirilmiştir. Sentezlenen Nanopartiküllerin karakterizasyonu UV-VIS absorpsiyon spektroskopisi, FT-IR, XRD ve SEM analizi ile gerçekleştirilmiştir. Bu Green-ZnO NP'lerinin test edilen bakteri suşlarına karşı antibakteriyel aktiviteye sahip olduğu gösterildi. Elde edilen sonuçlar, Saponaria officinalis bitki ekstraktının çinko nanoparçacıklarının sentezi için iyi bir biyolojik indirgeyici ajan olarak kullanılabileceğini göstermiştir.
Kaynakça
- Abdul Salam, H., Sivaraj, R., & Venckatesh, R. (2014). Green synthesis and characterization of zinc oxide nanoparticles from Ocimum basilicum L. var. purpurascens Benth.-Lamiaceae leaf extract. Materials Letters, 131, 16–18. https://doi.org/10.1016/j.matlet.2014.05.033
- Aitken, R. J., Creely, K. S., & Tran, C. L. (2004). Nanoparticles : An occupational hygiene review Prepared by the Institute of Occupational Medicine Nanoparticles : An occupational hygiene review. Crown Copyright, 7–18.
- Aladpoosh, R., & Montazer, M. (2015). The role of cellulosic chains of cotton in biosynthesis of ZnO nanorods producing multifunctional properties: Mechanism, characterizations and features. Carbohydrate Polymers, 126, 122–129. https://doi.org/10.1016/j.carbpol.2015.03.036
- Anžlovar, A., Crnjak Orel, Z., Kogej, K., & Žigon, M. (2012). Polyol-mediated synthesis of zinc oxide nanorods and nanocomposites with poly(methyl methacrylate). Journal of Nanomaterials, 2012. https://doi.org/10.1155/2012/760872
- Azizi, S., Mohamad, R., Bahadoran, A., Bayat, S., Rahim, R. A., Ariff, A., & Saad, W. Z. (2016). Effect of annealing temperature on antimicrobial and structural properties of bio-synthesized zinc oxide nanoparticles using flower extract of Anchusa italica.
Journal of Photochemistry and Photobiology B: Biology, 161, 441–449. https://doi.org/10.1016/j.jphotobiol.2016.06.007
- Banerjee, S., Dubey, S., Gautam, R. K., Chattopadhyaya, M. C., & Sharma, Y. C. (2019). Adsorption characteristics of alumina nanoparticles for the removal of hazardous dye, Orange G from aqueous solutions. Arabian Journal of Chemistry, 12(8), 5339–5354. https://doi.org/10.1016/j.arabjc.2016.12.016
- Bargebid, R., & Khabnadideh, S. (2020). ZnO in ionic liquid under microwave irradiation: A novel medium for synthesis of phloroglucide derivatives as antimicrobial agents. Indian Journal of Chemistry - Section B Organic and Medicinal Chemistry, 59(12), 1893–1902.
- Brandt, A. L., Castillo, A., Harris, K. B., Keeton, J. T., Hardin, M. D., & Taylor, T. M. (2010). Inhibition of Listeria monocytogenes by Food Antimicrobials Applied Singly and in Combination. Journal of Food Science, 75(9), M557–M563. https://doi.org/10.1111/j.1750-3841.2010.01843.x
- Brayner, R., Ferrari-Iliou, R., Brivois, N., Djediat, S., Benedetti, M. F., & Fiévet, F. (2006). Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Letters, 6(4), 866–870. https://doi.org/10.1021/nl052326h
- Buzea, C., Pacheco, I. I., & Robbie, K. (2007). Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases, 2(4), MR17–MR71. https://doi.org/10.1116/1.2815690
- Chamjangali, M. A., & Boroumand, S. (2013). Synthesis of flower-like Ag-ZnO nanostructure and its application in the photodegradation of methyl orange. Journal of the Brazilian Chemical Society, 24(8), 1329–1338. https://doi.org/10.5935/0103-5053.20130168
- Chandra, S., Rawat, D. S., & Bhatt, A. (2021). Phytochemistry and pharmacological activities of saponaria officinalis l.: A review. Notulae Scientia Biologicae, 13(1), 1–13. https://doi.org/10.15835/nsb13110809
- Cheng, B., Shi, W., Russell-Tanner, J. M., Zhang, L., & Samulski, E. T. (2006). Synthesis of Variable-Aspect-Ratio, Single-Crystalline ZnO Nanostructures. ChemInform, 37(17), 1208–1214. https://doi.org/10.1002/chin.200617225
- da Silva, E. C., de Moraes, M. O. S., Brito, W. R., Passos, R. R., Brambilla, R. F., da Costa, L. P., & Pocrifka, L. A. (2020). Synthesis of ZnO Nanoparticles by the Sol-Gel Protein Route: A Viable and Efficient Method for Photocatalytic Degradation of Methylene Blue and Ibuprofen. Journal of the Brazilian Chemical Society, 31(8), 1648–1653. https://doi.org/10.21577/0103-5053.20200050
- Elumalai, K., & Velmurugan, S. (2015). Green synthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from the leaf extract of Azadirachta indica (L.). Applied Surface Science, 345, 329–336. https://doi.org/10.1016/j.apsusc.2015.03.176
- Endonova, G. B., Antsupova, T. P., Zhamsaranova, S. D., & Lygdenov, D. V. (2015). Study of flavonoid and antioxidant activity of saponaria officinalis L. that occurs in Buryatia. Biosciences Biotechnology Research Asia, 12(3), 2017–2021. https://doi.org/10.13005/bbra/1869
- Gnanadesigan, M., Anand, M., Ravikumar, S., Maruthupandy, M., Syed Ali, M., Vijayakumar, V., & Kumaraguru, A. K. (2012). Antibacterial potential of biosynthesised silver nanoparticles using Avicennia marina mangrove plant. Applied Nanoscience (Switzerland), 2(2), 143–147. https://doi.org/10.1007/s13204-011-0048-6
- Guo, D., Xie, G., & Luo, J. (2014). Mechanical properties of nanoparticles: Basics and applications. Journal of Physics D: Applied Physics, 47(1). https://doi.org/10.1088/0022-3727/47/1/013001
- Halbus, A. F., Horozov, T. S., & Paunov, V. N. (2020). Surface-Modified Zinc Oxide Nanoparticles for Antialgal and Antiyeast Applications. ACS Applied Nano Materials, 3(1), 440–451. https://doi.org/10.1021/acsanm.9b02045
- Hassan, H. S., Elkady, M. F., El-Sayed, E. M., Hamed, A. M., Hussein, A. M., & Mahmoud, I. M. (2018). Synthesis and characterization of zinc oxide nanoparticles using green and chemical synthesis techniques for phenol decontamination. International Journal of Nanoelectronics and Materials, 11(2), 179–194.
- Huang, Z., Zheng, X., Yan, D., Yin, G., Liao, X., Kang, Y., … Hao, B. (2008). Toxicological effect of ZnO nanoparticles based on bacteria. Langmuir, 24(8), 4140–4144. https://doi.org/10.1021/la7035949
- Jurado Gonzalez, P., & Sörensen, P. M. (2020). Characterization of saponin foam from Saponaria officinalis for food applications. Food Hydrocolloids, 101(August 2019). https://doi.org/10.1016/j.foodhyd.2019.105541
- Krishnan, D., & Pradeep, T. (2009). Precursor-controlled synthesis of hierarchical ZnO nanostructures, using oligoaniline-coated Au nanoparticle seeds. Journal of Crystal Growth, 311(15), 3889–3897. https://doi.org/10.1016/j.jcrysgro.2009.06.019
- Kucukkurt, I., Ince, S., Enginar, H., Eryavuz, A., Fidan, A. F., & Kargioglu, M. (2011). Protective effects of Agrostemma githago L. and Saponaria officinalis L. extracts against ionizing radiation-induced oxidative damage in rats. Revue de Medecine Veterinaire, 162(6), 289–296.
- Linsinger, T. P. J., Roebben, G., Solans, C., & Ramsch, R. (2011). Reference materials for measuring the size of nanoparticles. TrAC - Trends in Analytical Chemistry, 30(1), 18–27. https://doi.org/10.1016/j.trac.2010.09.005
- Luo, F., Yang, D., Chen, Z., Megharaj, M., & Naidu, R. (2016). One-step green synthesis of bimetallic Fe/Pd nanoparticles used to degrade Orange II. Journal of Hazardous Materials, 303, 145–153. https://doi.org/10.1016/j.jhazmat.2015.10.034
- Manzoor, U., Siddique, S., Ahmed, R., Noreen, Z., Bokhari, H., & Ahmad, I. (2016). Antibacterial, structural and optical characterization of mechano-chemically prepared ZnO nanoparticles. PLoS ONE, 11(5), 1–12. https://doi.org/10.1371/journal.pone.0154704
- Maruthupandy, M., Zuo, Y., Chen, J. S., Song, J. M., Niu, H. L., Mao, C. J., … Shen, Y. H. (2017). Synthesis of metal oxide nanoparticles (CuO and ZnO NPs) via biological template and their optical sensor applications. Applied Surface Science, 397, 167–174. https://doi.org/10.1016/j.apsusc.2016.11.118
- Nayak, D., Ashe, S., Rauta, P. R., Kumari, M., & Nayak, B. (2016). Bark extract mediated green synthesis of silver nanoparticles: Evaluation of antimicrobial activity and antiproliferative response against osteosarcoma. Materials Science and Engineering C, 58, 44–52. https://doi.org/10.1016/j.msec.2015.08.022
- Padmavathy, N., & Vijayaraghavan, R. (2008). Enhanced bioactivity of ZnO nanoparticles - An antimicrobial study. Science and Technology of Advanced Materials, 9(3). https://doi.org/10.1088/1468-6996/9/3/035004
- Reddy, K. M., Feris, K., Bell, J., Wingett, D. G., Hanley, C., & Punnoose, A. (2007). Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Applied Physics Letters, 90(21), 10–13. https://doi.org/10.1063/1.2742324
- Sadowska, B., Budzyńska, A., Wieckowska-Szakiel, M., Paszkiewicz, M., Stochmal, A., Moniuszko-Szajwaj, B., … Rózalska, B. (2014). New pharmacological properties of Medicago sativa and Saponaria officinalis saponin-rich fractions addressed to Candida albicans. Journal of Medical Microbiology, 63(PART 8), 1076–1086. https://doi.org/10.1099/jmm.0.075291-0
- Sawai, J., Shoji, S., Igarashi, H., Hashimoto, A., Kokugan, T., Shimizu, M., & Kojima, D. (1998). Factor in Zinc Oxide. Journal of Fermentation and Bioengineering, 86(5), 521–522.
- Selim, Y. A., Azb, M. A., Ragab, I., & H. M. Abd El-Azim, M. (2020). Green Synthesis of Zinc Oxide Nanoparticles Using Aqueous Extract of Deverra tortuosa and their Cytotoxic Activities. Scientific Reports, 10(1), 1–9. https://doi.org/10.1038/s41598-020-60541-1
- Sengul, M., Ercisli, S., Yildiz, H., Gungor, N., Kavaz, A., & Çetina, B. (2011). Antioxidant, antimicrobial activity and total phenolic content within the aerial parts of artemisia absinthum, artemisia santonicum and saponaria officinalis. Iranian Journal of Pharmaceutical Research, 10(1), 49–56. https://doi.org/10.22037/ijpr.2010.877
- Slobodianiuk, L., Budniak, L., Marchyshyn, S., Kostyshyn, L., & Zakharchuk, O. (2021). Analysis of carbohydrates in Saponaria officinalis L. using GC/MS method. Pharmacia, 68(2), 339–345. https://doi.org/10.3897/PHARMACIA.68.E62691
- Sutradhar, P., & Saha, M. (2015). Synthesis of zinc oxide nanoparticles using tea leaf extract and its application for solar cell. Bulletin of Materials Science, 38(3), 653–657. https://doi.org/10.1007/s12034-015-0895-y
- Tănase, M. A., Marinescu, M., Oancea, P., Răducan, A., Mihaescu, C. I., Alexandrescu, E., … Cinteza, L. O. (2021). Antibacterial and photocatalytic properties of ZnO nanoparticles obtained from chemical versus Saponaria officinalis extract-mediated synthesis. Molecules, 26(7). https://doi.org/10.3390/molecules26072072
- Vijayakumar, S., Mahadevan, S., Arulmozhi, P., Sriram, S., & Praseetha, P. K. (2018). Green synthesis of zinc oxide nanoparticles using Atalantia monophylla leaf extracts: Characterization and antimicrobial analysis. Materials Science in Semiconductor Processing, 82(March), 39–45. https://doi.org/10.1016/j.mssp.2018.03.017
- Wahab, R., Kaushik, N. K., Verma, A. K., Mishra, A., Hwang, I. H., Yang, Y. B., … Kim, Y. S. (2011). Fabrication and growth mechanism of ZnO nanostructures and their cytotoxic effect on human brain tumor U87, cervical cancer HeLa, and normal HEK cells. Journal of Biological Inorganic Chemistry, 16(3), 431–442. https://doi.org/10.1007/s00775-010-0740-0
- Xia, T., Kovochich, M., Liong, M., Mädler, L., Gilbert, B., Shi, H., … Nel, A. E. (2008). Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano, 2(10), 2121–2134. https://doi.org/10.1021/nn800511k
- Xia, T., Kovochich, M., Liong, M., Mädler, L., Gilbert, B., Yeh, J. I., … Nel, A. E. (2014). NIH Public Access, 2(10), 2121–2134. https://doi.org/10.1021/nn800511k.Comparison
- Yuvakkumar, R., Suresh, J., Nathanael, A. J., Sundrarajan, M., & Hong, S. I. (2014). Novel green synthetic strategy to prepare ZnO nanocrystals using rambutan (Nephelium lappaceum L.) peel extract and its antibacterial applications. Materials Science and Engineering C, 41, 17–27. https://doi.org/10.1016/j.msec.2014.04.025
- Zarrindokht Emami-Karvani. (2012). Antibacterial activity of ZnO nanoparticle on Gram-positive and Gram-negative bacteria. African Journal of Microbiology Research, 5(18), 1368–1373. https://doi.org/10.5897/ajmr10.159
Biogenic Synthesis of Zinc Oxide Nanoparticles Using Saponaria officinalis L., Characterisation and Antibacterial Activities
Yıl 2022,
, 227 - 234, 07.05.2022
Hamdi Kamçı
,
Hasan Ufuk Çelebioğlu
,
Recep Taş
,
Ebru Köroğlu
Öz
The bioactivity exhibited by nanoparticles is of great interest by researchers worldwide. Phytogenic synthesis of zinc oxide nanoparticles (ZnO NPs) has been an environmentally friendly approach due to its low toxicity and biological potential. Today ZnONPs; researches are also prominent due to its versatile structure such as biomedical, wastewater treatment, environmental improvement and also its applicability in cosmetic products. It is known that ZnO produced by biosynthesis methods exhibits various nanostructures with antimicrobial, antioxidant and anticancer properties. For this reason, studies on the antioxidant and antibacterial activity of ZnONPs produced by green synthesis methods are increasing day by day. In this study, the biosynthesis of ZnONPs was carried out by evaluating the root parts of Saponaria officinalis plant with high polyphenol content used in the food industry, bread making and soap making in the cosmetics sector. Characterization of the Nanoparticles synthesiszed were performed by UV-VIS absorption spectroscopy, FT-IR, XRD and SEM analysis. These Green-ZnO NPs were demonstrated to posses antibacterial activity against bacteria strains tested. The results obtained showed that Saponaria officinalis plant extract can be used as a good bioreducing agent for the synthesis of zinc nanoparticles.
Kaynakça
- Abdul Salam, H., Sivaraj, R., & Venckatesh, R. (2014). Green synthesis and characterization of zinc oxide nanoparticles from Ocimum basilicum L. var. purpurascens Benth.-Lamiaceae leaf extract. Materials Letters, 131, 16–18. https://doi.org/10.1016/j.matlet.2014.05.033
- Aitken, R. J., Creely, K. S., & Tran, C. L. (2004). Nanoparticles : An occupational hygiene review Prepared by the Institute of Occupational Medicine Nanoparticles : An occupational hygiene review. Crown Copyright, 7–18.
- Aladpoosh, R., & Montazer, M. (2015). The role of cellulosic chains of cotton in biosynthesis of ZnO nanorods producing multifunctional properties: Mechanism, characterizations and features. Carbohydrate Polymers, 126, 122–129. https://doi.org/10.1016/j.carbpol.2015.03.036
- Anžlovar, A., Crnjak Orel, Z., Kogej, K., & Žigon, M. (2012). Polyol-mediated synthesis of zinc oxide nanorods and nanocomposites with poly(methyl methacrylate). Journal of Nanomaterials, 2012. https://doi.org/10.1155/2012/760872
- Azizi, S., Mohamad, R., Bahadoran, A., Bayat, S., Rahim, R. A., Ariff, A., & Saad, W. Z. (2016). Effect of annealing temperature on antimicrobial and structural properties of bio-synthesized zinc oxide nanoparticles using flower extract of Anchusa italica.
Journal of Photochemistry and Photobiology B: Biology, 161, 441–449. https://doi.org/10.1016/j.jphotobiol.2016.06.007
- Banerjee, S., Dubey, S., Gautam, R. K., Chattopadhyaya, M. C., & Sharma, Y. C. (2019). Adsorption characteristics of alumina nanoparticles for the removal of hazardous dye, Orange G from aqueous solutions. Arabian Journal of Chemistry, 12(8), 5339–5354. https://doi.org/10.1016/j.arabjc.2016.12.016
- Bargebid, R., & Khabnadideh, S. (2020). ZnO in ionic liquid under microwave irradiation: A novel medium for synthesis of phloroglucide derivatives as antimicrobial agents. Indian Journal of Chemistry - Section B Organic and Medicinal Chemistry, 59(12), 1893–1902.
- Brandt, A. L., Castillo, A., Harris, K. B., Keeton, J. T., Hardin, M. D., & Taylor, T. M. (2010). Inhibition of Listeria monocytogenes by Food Antimicrobials Applied Singly and in Combination. Journal of Food Science, 75(9), M557–M563. https://doi.org/10.1111/j.1750-3841.2010.01843.x
- Brayner, R., Ferrari-Iliou, R., Brivois, N., Djediat, S., Benedetti, M. F., & Fiévet, F. (2006). Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Letters, 6(4), 866–870. https://doi.org/10.1021/nl052326h
- Buzea, C., Pacheco, I. I., & Robbie, K. (2007). Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases, 2(4), MR17–MR71. https://doi.org/10.1116/1.2815690
- Chamjangali, M. A., & Boroumand, S. (2013). Synthesis of flower-like Ag-ZnO nanostructure and its application in the photodegradation of methyl orange. Journal of the Brazilian Chemical Society, 24(8), 1329–1338. https://doi.org/10.5935/0103-5053.20130168
- Chandra, S., Rawat, D. S., & Bhatt, A. (2021). Phytochemistry and pharmacological activities of saponaria officinalis l.: A review. Notulae Scientia Biologicae, 13(1), 1–13. https://doi.org/10.15835/nsb13110809
- Cheng, B., Shi, W., Russell-Tanner, J. M., Zhang, L., & Samulski, E. T. (2006). Synthesis of Variable-Aspect-Ratio, Single-Crystalline ZnO Nanostructures. ChemInform, 37(17), 1208–1214. https://doi.org/10.1002/chin.200617225
- da Silva, E. C., de Moraes, M. O. S., Brito, W. R., Passos, R. R., Brambilla, R. F., da Costa, L. P., & Pocrifka, L. A. (2020). Synthesis of ZnO Nanoparticles by the Sol-Gel Protein Route: A Viable and Efficient Method for Photocatalytic Degradation of Methylene Blue and Ibuprofen. Journal of the Brazilian Chemical Society, 31(8), 1648–1653. https://doi.org/10.21577/0103-5053.20200050
- Elumalai, K., & Velmurugan, S. (2015). Green synthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from the leaf extract of Azadirachta indica (L.). Applied Surface Science, 345, 329–336. https://doi.org/10.1016/j.apsusc.2015.03.176
- Endonova, G. B., Antsupova, T. P., Zhamsaranova, S. D., & Lygdenov, D. V. (2015). Study of flavonoid and antioxidant activity of saponaria officinalis L. that occurs in Buryatia. Biosciences Biotechnology Research Asia, 12(3), 2017–2021. https://doi.org/10.13005/bbra/1869
- Gnanadesigan, M., Anand, M., Ravikumar, S., Maruthupandy, M., Syed Ali, M., Vijayakumar, V., & Kumaraguru, A. K. (2012). Antibacterial potential of biosynthesised silver nanoparticles using Avicennia marina mangrove plant. Applied Nanoscience (Switzerland), 2(2), 143–147. https://doi.org/10.1007/s13204-011-0048-6
- Guo, D., Xie, G., & Luo, J. (2014). Mechanical properties of nanoparticles: Basics and applications. Journal of Physics D: Applied Physics, 47(1). https://doi.org/10.1088/0022-3727/47/1/013001
- Halbus, A. F., Horozov, T. S., & Paunov, V. N. (2020). Surface-Modified Zinc Oxide Nanoparticles for Antialgal and Antiyeast Applications. ACS Applied Nano Materials, 3(1), 440–451. https://doi.org/10.1021/acsanm.9b02045
- Hassan, H. S., Elkady, M. F., El-Sayed, E. M., Hamed, A. M., Hussein, A. M., & Mahmoud, I. M. (2018). Synthesis and characterization of zinc oxide nanoparticles using green and chemical synthesis techniques for phenol decontamination. International Journal of Nanoelectronics and Materials, 11(2), 179–194.
- Huang, Z., Zheng, X., Yan, D., Yin, G., Liao, X., Kang, Y., … Hao, B. (2008). Toxicological effect of ZnO nanoparticles based on bacteria. Langmuir, 24(8), 4140–4144. https://doi.org/10.1021/la7035949
- Jurado Gonzalez, P., & Sörensen, P. M. (2020). Characterization of saponin foam from Saponaria officinalis for food applications. Food Hydrocolloids, 101(August 2019). https://doi.org/10.1016/j.foodhyd.2019.105541
- Krishnan, D., & Pradeep, T. (2009). Precursor-controlled synthesis of hierarchical ZnO nanostructures, using oligoaniline-coated Au nanoparticle seeds. Journal of Crystal Growth, 311(15), 3889–3897. https://doi.org/10.1016/j.jcrysgro.2009.06.019
- Kucukkurt, I., Ince, S., Enginar, H., Eryavuz, A., Fidan, A. F., & Kargioglu, M. (2011). Protective effects of Agrostemma githago L. and Saponaria officinalis L. extracts against ionizing radiation-induced oxidative damage in rats. Revue de Medecine Veterinaire, 162(6), 289–296.
- Linsinger, T. P. J., Roebben, G., Solans, C., & Ramsch, R. (2011). Reference materials for measuring the size of nanoparticles. TrAC - Trends in Analytical Chemistry, 30(1), 18–27. https://doi.org/10.1016/j.trac.2010.09.005
- Luo, F., Yang, D., Chen, Z., Megharaj, M., & Naidu, R. (2016). One-step green synthesis of bimetallic Fe/Pd nanoparticles used to degrade Orange II. Journal of Hazardous Materials, 303, 145–153. https://doi.org/10.1016/j.jhazmat.2015.10.034
- Manzoor, U., Siddique, S., Ahmed, R., Noreen, Z., Bokhari, H., & Ahmad, I. (2016). Antibacterial, structural and optical characterization of mechano-chemically prepared ZnO nanoparticles. PLoS ONE, 11(5), 1–12. https://doi.org/10.1371/journal.pone.0154704
- Maruthupandy, M., Zuo, Y., Chen, J. S., Song, J. M., Niu, H. L., Mao, C. J., … Shen, Y. H. (2017). Synthesis of metal oxide nanoparticles (CuO and ZnO NPs) via biological template and their optical sensor applications. Applied Surface Science, 397, 167–174. https://doi.org/10.1016/j.apsusc.2016.11.118
- Nayak, D., Ashe, S., Rauta, P. R., Kumari, M., & Nayak, B. (2016). Bark extract mediated green synthesis of silver nanoparticles: Evaluation of antimicrobial activity and antiproliferative response against osteosarcoma. Materials Science and Engineering C, 58, 44–52. https://doi.org/10.1016/j.msec.2015.08.022
- Padmavathy, N., & Vijayaraghavan, R. (2008). Enhanced bioactivity of ZnO nanoparticles - An antimicrobial study. Science and Technology of Advanced Materials, 9(3). https://doi.org/10.1088/1468-6996/9/3/035004
- Reddy, K. M., Feris, K., Bell, J., Wingett, D. G., Hanley, C., & Punnoose, A. (2007). Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Applied Physics Letters, 90(21), 10–13. https://doi.org/10.1063/1.2742324
- Sadowska, B., Budzyńska, A., Wieckowska-Szakiel, M., Paszkiewicz, M., Stochmal, A., Moniuszko-Szajwaj, B., … Rózalska, B. (2014). New pharmacological properties of Medicago sativa and Saponaria officinalis saponin-rich fractions addressed to Candida albicans. Journal of Medical Microbiology, 63(PART 8), 1076–1086. https://doi.org/10.1099/jmm.0.075291-0
- Sawai, J., Shoji, S., Igarashi, H., Hashimoto, A., Kokugan, T., Shimizu, M., & Kojima, D. (1998). Factor in Zinc Oxide. Journal of Fermentation and Bioengineering, 86(5), 521–522.
- Selim, Y. A., Azb, M. A., Ragab, I., & H. M. Abd El-Azim, M. (2020). Green Synthesis of Zinc Oxide Nanoparticles Using Aqueous Extract of Deverra tortuosa and their Cytotoxic Activities. Scientific Reports, 10(1), 1–9. https://doi.org/10.1038/s41598-020-60541-1
- Sengul, M., Ercisli, S., Yildiz, H., Gungor, N., Kavaz, A., & Çetina, B. (2011). Antioxidant, antimicrobial activity and total phenolic content within the aerial parts of artemisia absinthum, artemisia santonicum and saponaria officinalis. Iranian Journal of Pharmaceutical Research, 10(1), 49–56. https://doi.org/10.22037/ijpr.2010.877
- Slobodianiuk, L., Budniak, L., Marchyshyn, S., Kostyshyn, L., & Zakharchuk, O. (2021). Analysis of carbohydrates in Saponaria officinalis L. using GC/MS method. Pharmacia, 68(2), 339–345. https://doi.org/10.3897/PHARMACIA.68.E62691
- Sutradhar, P., & Saha, M. (2015). Synthesis of zinc oxide nanoparticles using tea leaf extract and its application for solar cell. Bulletin of Materials Science, 38(3), 653–657. https://doi.org/10.1007/s12034-015-0895-y
- Tănase, M. A., Marinescu, M., Oancea, P., Răducan, A., Mihaescu, C. I., Alexandrescu, E., … Cinteza, L. O. (2021). Antibacterial and photocatalytic properties of ZnO nanoparticles obtained from chemical versus Saponaria officinalis extract-mediated synthesis. Molecules, 26(7). https://doi.org/10.3390/molecules26072072
- Vijayakumar, S., Mahadevan, S., Arulmozhi, P., Sriram, S., & Praseetha, P. K. (2018). Green synthesis of zinc oxide nanoparticles using Atalantia monophylla leaf extracts: Characterization and antimicrobial analysis. Materials Science in Semiconductor Processing, 82(March), 39–45. https://doi.org/10.1016/j.mssp.2018.03.017
- Wahab, R., Kaushik, N. K., Verma, A. K., Mishra, A., Hwang, I. H., Yang, Y. B., … Kim, Y. S. (2011). Fabrication and growth mechanism of ZnO nanostructures and their cytotoxic effect on human brain tumor U87, cervical cancer HeLa, and normal HEK cells. Journal of Biological Inorganic Chemistry, 16(3), 431–442. https://doi.org/10.1007/s00775-010-0740-0
- Xia, T., Kovochich, M., Liong, M., Mädler, L., Gilbert, B., Shi, H., … Nel, A. E. (2008). Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano, 2(10), 2121–2134. https://doi.org/10.1021/nn800511k
- Xia, T., Kovochich, M., Liong, M., Mädler, L., Gilbert, B., Yeh, J. I., … Nel, A. E. (2014). NIH Public Access, 2(10), 2121–2134. https://doi.org/10.1021/nn800511k.Comparison
- Yuvakkumar, R., Suresh, J., Nathanael, A. J., Sundrarajan, M., & Hong, S. I. (2014). Novel green synthetic strategy to prepare ZnO nanocrystals using rambutan (Nephelium lappaceum L.) peel extract and its antibacterial applications. Materials Science and Engineering C, 41, 17–27. https://doi.org/10.1016/j.msec.2014.04.025
- Zarrindokht Emami-Karvani. (2012). Antibacterial activity of ZnO nanoparticle on Gram-positive and Gram-negative bacteria. African Journal of Microbiology Research, 5(18), 1368–1373. https://doi.org/10.5897/ajmr10.159