In this study, we investigate the form of the solutions of the following rational difference equation system
x_n=(z_(n-1) z_(n-3))/(x_(n-2)+2z_(n-3) ),y_n=(x_(n-1) x_(n-3))/(〖-y〗_(n-2)+6x_(n-3) ),z_n=(y_(n-1) y_(n-3))/(z_(n-2)+14y_(n-3) ) ,n∈N_0
where initial values〖 x〗_(-3) 〖,x〗_(-2), x_(-1),y_(-3),y_(-2),y_(-1),〖 z〗_(-3),〖 z〗_(-2),〖 z〗_(-1) are nonzero real numbers, such that their solutions are associated with Pell numbers. We also give a relationships between Pell numbers and solutions of systems
System of difference equations Pell numbers Representation of solutions Binet formula Solutions
In this study, we investigate the form of the solutions of the following rational difference equation system
x_n=(z_(n-1) z_(n-3))/(x_(n-2)+2z_(n-3) ),y_n=(x_(n-1) x_(n-3))/(〖-y〗_(n-2)+6x_(n-3) ),z_n=(y_(n-1) y_(n-3))/(z_(n-2)+14y_(n-3) ) ,n∈N_0
where initial values〖 x〗_(-3) 〖,x〗_(-2), x_(-1),y_(-3),y_(-2),y_(-1),〖 z〗_(-3),〖 z〗_(-2),〖 z〗_(-1) are nonzero real numbers, such that their solutions are associated with Pell numbers. We also give a relationships between Pell numbers and solutions of systems
System of difference equations Pell numbers Representation of solutions Binet formula Solutions
Birincil Dil | İngilizce |
---|---|
Konular | Mühendislik |
Bölüm | Makaleler |
Yazarlar | |
Yayımlanma Tarihi | 31 Mart 2022 |
Yayımlandığı Sayı | Yıl 2022 |