Araştırma Makalesi
BibTex RIS Kaynak Göster

Etilen Glikol ve Gliserol Konsantrasyonlarının Çavdar Esaslı Filmlerin Özelliklerine Etkisi

Yıl 2022, , 705 - 710, 31.03.2022
https://doi.org/10.31590/ejosat.1083197

Öz

Çavdar unu bazlı yenilebilir filmler, %40 ila %100 (a/a çavdar unu) arasında değişen konsantrasyonlarda plastikleştirici olarak gliserol ve etilen glikol kullanılarak üretilmiştir. Filmlerin yapısal, mekanik, fiziksel ve kimyasal özellikleri incelenmiştir. Sonuçlar, plastikleştirici konsantrasyonunun arttırılmasının filmlerin kalınlığını, su buharı geçirgenliğini ve suda çözünürlüğünü arttırdığını göstermiştir. Filmlerin su buharı geçirgenliği ve çözünürlüğü plastikleştirici türünden etkilenmezken, gliserol içeren filmlerin kalınlığı önemli ölçüde daha yüksek çıkmıştır. Kompozitler için iyi mekanik özellikler elde edilmiş olup, en yüksek çekme mukavemeti 7,47 MPa ile %40 etilen glikol (a/a çavdar unu) içeren filmde ölçülmüş ve en yüksek uzama %69,3 ile %100 gliserol (a/a çavdar unu) içeren filmde gözlemlenmiştir. Eklenen plastikleştiricideki artış, kompozitlerdeki olası seyreltme etkisinden dolayı, filmlerin antioksidan aktivite ve toplam fenolik içeriği üzerinde olumsuz etkisi olmuştur.

Kaynakça

  • Adilah, Z., & Hanani, Z. (2016). Active packaging of fish gelatin films with Morinda citrifolia oil. Food Bioscience, 16:66-71.
  • Akşehir, K., (2013). Ak Dut (Morus alba) ve Kara Dut (Morus nigra) Meyvelerinden Elde Edilen Yenilebilir Filmlerin Karakterizasyonu. Yüksek Lisans Tezi, Ondokuz Mayıs Üniversitesi, Samsun, Turkey.
  • Barros, H., & Boas, E. (2021). Edible seeds clustering based on phenolics and antioxidant activity using multivariate analysis. LWT, 152.
  • Blacido, D., & Sobral, P. (2011). Optimization of amaranth flour films plasticized with glycerol and sorbitol by multi-response analysis. LWT-Food Science and Technology, 44:1731-1738.
  • Baykuş, A., (2019). Askorbik Asit ve Potasyum Sorbat ile Yenilebilir Film Kaplamanın Kaymağın Raf Ömrü Üzerine Etkisinin Araştırılması. Yüksek Lisans Tezi, Van Yüzüncü Yıl Üniversitesi, Van, Turkey.
  • Cai, L., & Zhao, R. (2022). Development of edible composite film based on chitosan nanoparticles and their application in packaging of fresh red sea bream fillets. Food Control, 132.
  • Daudt, R. (2017). Development of edible films based on Brazilian pine seed (Araucaria angustifolia) flour reinforced with husk powder. Food Hydrocolloids, 71:60-67.
  • Dick, M., & Pagno, C. (2015). Edible films based on chia flour: Development and characterization. Journal of Applied Polymer Science.
  • Du, H., & Chen, H. (2021). Development and characterization of fish myofibrillar protein/chitosan/rosemary extract composite edible films and the improvement of lipid oxidation stability during the grass carp fillets storage. International Journal of Biological Macromolecules, 184:463-475.
  • Erdoğan, A. E., (2020). Ayva Çekirdeği Müsilajı ve Kitosanla Yenilebilir Film Elde Edilmesi ve Özellikleriinin Belirlenmesi. Yüksek Lisans Tezi, Sivas Cumhuriyet Üniversitesi, Sivas, Turkey.
  • Fakhouri, F., & Mei, L. (2012). Edible films made from blends of manioc starch and gelatin – Influence of different types of plasticizer and different levels of macromolecules on their properties. LWT, 49(1): 149-154.
  • Gutierrez, T. (2021). In vitro and in vivo digestibility from bionanocomposite edible films based on native pumpkin flour/plum flour. Food Hydrocolloids, 112.
  • Liu, Z., & Lin, D. (2021). Konjac glucomannan-based edible films loaded with thyme essential oil: Physical properties and antioxidant-antibacterial activities. Food Packaging and Shelf Life, 29.
  • Maniglia, B.C., Tessaro, L., Ramos, A.P., Tapia-Blacido, D.R. (2019) Which plasticizer is suitable for films based on babassu starch isolated by different methods? Food Hydrocolloids, 89: 143-152.
  • Marron, M. (2019). Effects of alginate-glycerol-citric acid concentrations on selected physical, mechanical, and barrier properties of papaya puree-based edible films and coatings, as evaluated by response surface methodology. LWT, 83-91. Martins, J. T., & Cerquira, M. A. (2012). Influence of α-tocopherol on physicochemical properties of chitosan-based films. Food Hydrocolloids, 220-227.
  • Nouraddini, M., & Esmaiili, M. (2018). Development and characterization of edible films based on eggplant flour and corn starch. International Journal of Biological Macromolecules, 120:1639-1645.
  • Priyadarshi, R., Riahi, Z., Rhim, J.W., (2022). Antioxidant pectin/pullulan edible coating incorporated with Vitis vinifera grape seed extract for extending the shelf life of peanuts, Postharvest Biology and Technology, 183, 111740.
  • Rong, L., & Xie, J. (2021). Preparation and characterization of hyacinth bean starch film incorporated with TiO2 nanoparticles and Mesona chinensis Benth polysaccharide. International Journal of Biological Macromolecules, 190:151-158.
  • Shi, R., & Zhang, Z. (2007). Characterization of citric acid/glycerol co-plasticized thermoplastic starch prepared by melt blending. Carbohydrate Polymers, 748-755.
  • Shivangi, S., & Shetty, N. (2021). Development and characterisation of a pectin-based edible film that contains mulberry leaf extract and its bio-active components. Food Hydrocolloids, 121.
  • Sucheta, & Rai, S. K. (2019). Evaluation of structural integrity and functionality of commercial pectin based edible films incorporated with corn flour, beetroot, orange peel, muesli and rice flour. Food Hydrocolloids, 127-135.
  • Toth, A. & Halasz, K. (2019). Characterization of edible biocomposite films directly prepared from psyllium seed husk and husk flour, Food Packaging and Shelf Life, 20, 100299.
  • Zahra, Z., & Yazdi, F. T. (2020). Development and characterization of antioxidant and antimicrobial edible films based on chitosan and gamma-aminobutyric acid-rich fermented soy protein. Carbohydrate Polymers, 244.

Effect of Ethylene Glycol and Glycerol Concentrations on Properties of Rye-Based Films

Yıl 2022, , 705 - 710, 31.03.2022
https://doi.org/10.31590/ejosat.1083197

Öz

Rye flour based edible films were produced by using glycerol and ethylene glycol as plasticizers at concentrations ranging between 40 to 100% (w/w of rye flour). The structural, mechanical, physical, and chemical properties of the films were investigated. The results showed that increasing the plasticizer concentration resulted in a greater the thickness, water vapor permeability, and water solubility of the films. While water vapor permeability and solubility were not affected by the plasticizer type, the thickness of glyserol-containing films was significantly higher. Good mechanical properties were obtained for the composites, where the greatest tensile strength of 7.47 MPa was measured in the film containing 40% ethylene glycol (w/w rye flour) and the highest elongation of 69.3% was observed in the film containing 100% glycerol (w/w rye flour). The increase in added plasticizer had an adverse effect on antioxidant activity and the total phenolic content of the films, due to probable dilution effect in the composites.

Kaynakça

  • Adilah, Z., & Hanani, Z. (2016). Active packaging of fish gelatin films with Morinda citrifolia oil. Food Bioscience, 16:66-71.
  • Akşehir, K., (2013). Ak Dut (Morus alba) ve Kara Dut (Morus nigra) Meyvelerinden Elde Edilen Yenilebilir Filmlerin Karakterizasyonu. Yüksek Lisans Tezi, Ondokuz Mayıs Üniversitesi, Samsun, Turkey.
  • Barros, H., & Boas, E. (2021). Edible seeds clustering based on phenolics and antioxidant activity using multivariate analysis. LWT, 152.
  • Blacido, D., & Sobral, P. (2011). Optimization of amaranth flour films plasticized with glycerol and sorbitol by multi-response analysis. LWT-Food Science and Technology, 44:1731-1738.
  • Baykuş, A., (2019). Askorbik Asit ve Potasyum Sorbat ile Yenilebilir Film Kaplamanın Kaymağın Raf Ömrü Üzerine Etkisinin Araştırılması. Yüksek Lisans Tezi, Van Yüzüncü Yıl Üniversitesi, Van, Turkey.
  • Cai, L., & Zhao, R. (2022). Development of edible composite film based on chitosan nanoparticles and their application in packaging of fresh red sea bream fillets. Food Control, 132.
  • Daudt, R. (2017). Development of edible films based on Brazilian pine seed (Araucaria angustifolia) flour reinforced with husk powder. Food Hydrocolloids, 71:60-67.
  • Dick, M., & Pagno, C. (2015). Edible films based on chia flour: Development and characterization. Journal of Applied Polymer Science.
  • Du, H., & Chen, H. (2021). Development and characterization of fish myofibrillar protein/chitosan/rosemary extract composite edible films and the improvement of lipid oxidation stability during the grass carp fillets storage. International Journal of Biological Macromolecules, 184:463-475.
  • Erdoğan, A. E., (2020). Ayva Çekirdeği Müsilajı ve Kitosanla Yenilebilir Film Elde Edilmesi ve Özellikleriinin Belirlenmesi. Yüksek Lisans Tezi, Sivas Cumhuriyet Üniversitesi, Sivas, Turkey.
  • Fakhouri, F., & Mei, L. (2012). Edible films made from blends of manioc starch and gelatin – Influence of different types of plasticizer and different levels of macromolecules on their properties. LWT, 49(1): 149-154.
  • Gutierrez, T. (2021). In vitro and in vivo digestibility from bionanocomposite edible films based on native pumpkin flour/plum flour. Food Hydrocolloids, 112.
  • Liu, Z., & Lin, D. (2021). Konjac glucomannan-based edible films loaded with thyme essential oil: Physical properties and antioxidant-antibacterial activities. Food Packaging and Shelf Life, 29.
  • Maniglia, B.C., Tessaro, L., Ramos, A.P., Tapia-Blacido, D.R. (2019) Which plasticizer is suitable for films based on babassu starch isolated by different methods? Food Hydrocolloids, 89: 143-152.
  • Marron, M. (2019). Effects of alginate-glycerol-citric acid concentrations on selected physical, mechanical, and barrier properties of papaya puree-based edible films and coatings, as evaluated by response surface methodology. LWT, 83-91. Martins, J. T., & Cerquira, M. A. (2012). Influence of α-tocopherol on physicochemical properties of chitosan-based films. Food Hydrocolloids, 220-227.
  • Nouraddini, M., & Esmaiili, M. (2018). Development and characterization of edible films based on eggplant flour and corn starch. International Journal of Biological Macromolecules, 120:1639-1645.
  • Priyadarshi, R., Riahi, Z., Rhim, J.W., (2022). Antioxidant pectin/pullulan edible coating incorporated with Vitis vinifera grape seed extract for extending the shelf life of peanuts, Postharvest Biology and Technology, 183, 111740.
  • Rong, L., & Xie, J. (2021). Preparation and characterization of hyacinth bean starch film incorporated with TiO2 nanoparticles and Mesona chinensis Benth polysaccharide. International Journal of Biological Macromolecules, 190:151-158.
  • Shi, R., & Zhang, Z. (2007). Characterization of citric acid/glycerol co-plasticized thermoplastic starch prepared by melt blending. Carbohydrate Polymers, 748-755.
  • Shivangi, S., & Shetty, N. (2021). Development and characterisation of a pectin-based edible film that contains mulberry leaf extract and its bio-active components. Food Hydrocolloids, 121.
  • Sucheta, & Rai, S. K. (2019). Evaluation of structural integrity and functionality of commercial pectin based edible films incorporated with corn flour, beetroot, orange peel, muesli and rice flour. Food Hydrocolloids, 127-135.
  • Toth, A. & Halasz, K. (2019). Characterization of edible biocomposite films directly prepared from psyllium seed husk and husk flour, Food Packaging and Shelf Life, 20, 100299.
  • Zahra, Z., & Yazdi, F. T. (2020). Development and characterization of antioxidant and antimicrobial edible films based on chitosan and gamma-aminobutyric acid-rich fermented soy protein. Carbohydrate Polymers, 244.
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Nurcennet Ertürk 0000-0001-8958-9146

Suzan Biran Ay 0000-0002-2968-4982

Yayımlanma Tarihi 31 Mart 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Ertürk, N., & Biran Ay, S. (2022). Effect of Ethylene Glycol and Glycerol Concentrations on Properties of Rye-Based Films. Avrupa Bilim Ve Teknoloji Dergisi(34), 705-710. https://doi.org/10.31590/ejosat.1083197