Araştırma Makalesi
BibTex RIS Kaynak Göster

İstanbul Barajlarının Doluluk Oranı Tahmini

Yıl 2022, , 229 - 239, 30.11.2022
https://doi.org/10.31590/ejosat.1084484

Öz

Küresel ısınmanın etkisiyle tüm dünyada içme suyu sorunu ciddi bir problem olmaya başlamaktadır. İstanbul gibi kalabalık metropollerde içme suyu sorunu ciddi bir sorundur. Bu çalışmada, İstanbul barajlarının 2011-2020 yılları arasındaki doluluk oranları kullanılarak bir tahmin modeli geliştirilmesi amaçlanmıştır. "Hareketli Ortalama", "ARIMA", "Fbprohet" ve "Üssel Düzgünleştirme" tahmin modelleri "Ortalama Karesel hatasının karekökü" ve "Ortalama karesel hata" değerlerine göre karşılaştırılmış ve her bir barajın 2021 ve 2022 yılları için doluluk oranı tahmin edilmeye çalışılmıştır. Tahmin modelinin sonuçlarına göre İstanbul'daki barajların doluluk oranında bir düşüş öngörülmektedir. Bu nedenle 2022 yılı için su kıtlığının yaşanmaması için gerekli önlemlerin alınması gerektiği düşünülmektedir.

Kaynakça

  • Paterson, M., 2013. Global Warming and Global Politics. Hoboken: Taylor and Francis.
  • K. Öztürk, “Küresel İklim Değişikliği ve Türkiye’ye Olası Etkileri,” G.Ü. Gazi Eğitim Fakültesi Dergisi Cilt 22, Sayı 1 (2002) 47-65.
  • 2022. [online] Available at: https://www.iski.istanbul/web/
  • Yilmaz, Y., & Buyrukoglu, S. (2021). Hybrid Machine Learning Model Coupled with School Closure For Forecasting COVID-19 Cases in the Most Affected Countries. Hittite Journal Of Science &Amp; Engineering, 8(2), 123-131.
  • Buyrukoglu, S. (2021). Promising Cryptocurrency Analysis using Deep Learning. 2021 5Th International Symposium On Multidisciplinary Studies And Innovative Technologies (ISMSIT).
  • E. Ayyıldız & M. Erdoğan (2022). Forecasting of daily dam occupancy rates using LSTM networks. World Journal of Environmental Research. 12(1), 33-42.
  • Data.ibb.gov.tr. 2022. Hoş Geldiniz - İBB. [online] Available at: <https://data.ibb.gov.tr>
  • van Greunen, J., Heymans, A., van Heerden, C. and van Vuuren, G., 2014. The Prominence of Stationarity in Time Series Forecasting. Studies in Economics and Econometrics, 38(1), pp.1-16.
  • 2022. [online] Available at: <https://towardsdatascience.com/stationarity-in-time-series-analysis-90c94f27322> [Accessed 11 January 2022].
  • Dolado, J., Gonzalo, J. and Mayoral, L., 2002. A Fractional Dickey-Fuller Test for Unit Roots. Econometrica, 70(5), pp.1963-2006.
  • Weiming, J., 2015. Mastering Python for Finance. Birmingham, UK: Packt Publishing.
  • Hyndman, Rob J. "Moving Averages." (2011): 866-869.
  • Contreras, Javier, et al. "ARIMA models to predict next-day electricity prices." IEEE transactions on power systems 18.3 (2003): 1014-1020.
  • Kaynar O., Taştan S., ZAMAN SERİLERİ TAHMİNİNDE ARIMA-MLP MELEZ MODELİ, Atatürk Üniversitesi İktisadi ve İdari Bilimler Dergisi, Cilt: 23, Sayı: 3, 2009.
  • Nobre, Flávio Fonseca, et al. "Dynamic linear model and SARIMA: a comparison of their forecasting performance in epidemiology." Statistics in medicine 20.20 (2001): 3051-306
  • Chikkakrishna, Naveen Kumar, et al. "Short-term traffic prediction using sarima and FbPROPHET." 2019 IEEE 16th India Council International Conference (INDICON). IEEE, 2019.
  • Ostertagová, Eva, and Oskar Ostertag. "The simple exponential smoothing model." The 4th International Conference on Modelling of Mechanical and Mechatronic Systems, Technical University of Košice, Slovak Republic, Proceedings of conference. 2011.

Forecasting of Occupancy Rate of Dams in İstanbul

Yıl 2022, , 229 - 239, 30.11.2022
https://doi.org/10.31590/ejosat.1084484

Öz

Drinking water is becoming a crucial problem all over the world due to the effects of global warming. In crowded metropolises such as Istanbul, the problem of drinking water is a serious problem. In this study, it is aimed at developing a forecasting model by using the occupancy rates of Istanbul's dams between 2011 and 2020. The occupancy rate of each dam is then estimated using the best model for the years 2021 and 2022. According to the results of the estimation model, a decrease in the occupancy level of the dams in Istanbul is predicted. Therefore, it is thought that necessary measures should be taken to avoid water shortages.

Kaynakça

  • Paterson, M., 2013. Global Warming and Global Politics. Hoboken: Taylor and Francis.
  • K. Öztürk, “Küresel İklim Değişikliği ve Türkiye’ye Olası Etkileri,” G.Ü. Gazi Eğitim Fakültesi Dergisi Cilt 22, Sayı 1 (2002) 47-65.
  • 2022. [online] Available at: https://www.iski.istanbul/web/
  • Yilmaz, Y., & Buyrukoglu, S. (2021). Hybrid Machine Learning Model Coupled with School Closure For Forecasting COVID-19 Cases in the Most Affected Countries. Hittite Journal Of Science &Amp; Engineering, 8(2), 123-131.
  • Buyrukoglu, S. (2021). Promising Cryptocurrency Analysis using Deep Learning. 2021 5Th International Symposium On Multidisciplinary Studies And Innovative Technologies (ISMSIT).
  • E. Ayyıldız & M. Erdoğan (2022). Forecasting of daily dam occupancy rates using LSTM networks. World Journal of Environmental Research. 12(1), 33-42.
  • Data.ibb.gov.tr. 2022. Hoş Geldiniz - İBB. [online] Available at: <https://data.ibb.gov.tr>
  • van Greunen, J., Heymans, A., van Heerden, C. and van Vuuren, G., 2014. The Prominence of Stationarity in Time Series Forecasting. Studies in Economics and Econometrics, 38(1), pp.1-16.
  • 2022. [online] Available at: <https://towardsdatascience.com/stationarity-in-time-series-analysis-90c94f27322> [Accessed 11 January 2022].
  • Dolado, J., Gonzalo, J. and Mayoral, L., 2002. A Fractional Dickey-Fuller Test for Unit Roots. Econometrica, 70(5), pp.1963-2006.
  • Weiming, J., 2015. Mastering Python for Finance. Birmingham, UK: Packt Publishing.
  • Hyndman, Rob J. "Moving Averages." (2011): 866-869.
  • Contreras, Javier, et al. "ARIMA models to predict next-day electricity prices." IEEE transactions on power systems 18.3 (2003): 1014-1020.
  • Kaynar O., Taştan S., ZAMAN SERİLERİ TAHMİNİNDE ARIMA-MLP MELEZ MODELİ, Atatürk Üniversitesi İktisadi ve İdari Bilimler Dergisi, Cilt: 23, Sayı: 3, 2009.
  • Nobre, Flávio Fonseca, et al. "Dynamic linear model and SARIMA: a comparison of their forecasting performance in epidemiology." Statistics in medicine 20.20 (2001): 3051-306
  • Chikkakrishna, Naveen Kumar, et al. "Short-term traffic prediction using sarima and FbPROPHET." 2019 IEEE 16th India Council International Conference (INDICON). IEEE, 2019.
  • Ostertagová, Eva, and Oskar Ostertag. "The simple exponential smoothing model." The 4th International Conference on Modelling of Mechanical and Mechatronic Systems, Technical University of Košice, Slovak Republic, Proceedings of conference. 2011.
Toplam 17 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Mehmet Eren Nalici 0000-0002-7954-6916

Ayhan Akbaş 0000-0002-6425-104X

Yayımlanma Tarihi 30 Kasım 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Nalici, M. E., & Akbaş, A. (2022). Forecasting of Occupancy Rate of Dams in İstanbul. Avrupa Bilim Ve Teknoloji Dergisi(41), 229-239. https://doi.org/10.31590/ejosat.1084484