Akımlı ve Akımsız Yöntemlerle Üretilen Ni-P-CNF Kaplamaların Sertlik ve Korozyon Açısından Kıyaslanması
Yıl 2022,
, 127 - 131, 30.09.2022
Melisa Köse
,
Buse Yavuz
,
Zeynep Özcan
,
Dilara Uslu
,
Görkem Bulut
,
Sezer Tan
,
Hasan Algül
,
Mehmet Uysal
Öz
Akımlı ve akımsız yöntemlerle üretilen Ni-P ve Ni-P-CNF(karbon nanofiber) kaplamalar bu çalışmada sertlik ve korozyon özellikleri açısından kıyaslanmıştır. Son yıllarda oldukça popüler olan elektrolitik(akımlı ve akımsız) kaplamalar kendi içlerinde birçok avantajı da barındırmaktadır. Bu avantajlardan birçok araştırmacı faydalanmış ve literatür zenginliği oluşturmuştur. CNF ile yapılan kaplama çalışmaları ise sınırlıdır. Kaplamalara takviye edilen CNF korozyon direncinde artış sağlamaktadır. Çalışmada korozyon oranı değerleri verilerek bu artış gösterilmiştir. CNF eklenerek elde edilen kaplamaların korozyon oranı akımsız yöntemle kaplanan Ni-P-CNF numunesinde 5,34x10-3mpy olarak bulunmuştur. Akımlı kaplamada bu değer bir miktar artışla 15,79x10-3’e yükselmiştir. Akımsız kaplama yöntemi ile üretilen kaplamaların korozyon direnci daha yüksek olmaktadır. CNF’nin etkisini daha iyi anlatabilmek için alaşım olan Ni-P kaplamalarla kıyaslanmıştır. Sonuçlar CNF’nin olumlu etkisini ortaya koymuştur. Çalışmada ayrıca sertlik değerleri de Vickers mikrosertlik alınarak kıyaslanmıştır. Sertlik çalışmalarında CNF olumsuz etki göstermiştir. CNF eklenen kaplamalarda sertlik değerleri daha düşük çıkmıştır(akımsızda 521Hv – akımlıda 572Hv). Kaplamalar aynı zamanda X-ışınları difraktometresi (XRD),Taramalı elektron mikroskobu (SEM) ve enerji dağılım spektrometresi (EDS) analizleri ile çalışma desteklenmiştir.
Kaynakça
- Borkar, T., & Harimkar, S. P. (2011). Effect of electrodeposition conditions and reinforcement content on microstructure and tribological properties of nickel composite coatings. Surface and Coatings Technology, 205(17–18), 4124–4134. https://doi.org/10.1016/j.surfcoat.2011.02.057
- Dhiman, M. K., Kumar, M., Ram, M., & Sharma, S. (2018). Investigation of Hardness of Electroless Ni-P-CNF Composite Coatings. 6(2), 238–245.
- Fathy, M., Kashyout, A. E. H. B., Elyamny, S., Roston, G. D., & Bishara, A. A. (2014). Effect of CdCl2 concentration and heat treatment on electrodeposited nano-crystalline CdS thin films from non-aqueous solution. International Journal of Electrochemical Science, 9(11), 6155–6165.
- Gao, Z., Zhao, S., Wang, Y., Wang, X., & Wen, L. (2015). Corrosion behavior and wear resistance characteristics of electroless Ni-P-CNTs plating on carbon steel. International Journal of Electrochemical Science, 10(1), 637–648.
- Huang, H. C., Chung, S. T., Pan, S. J., Tsai, W. T., & Lin, C. S. (2010). Microstructure evolution and hardening mechanisms of Ni-P electrodeposits. Surface and Coatings Technology, 205(7), 2097–2103. https://doi.org/10.1016/j.surfcoat.2010.08.115
- Lelevic, A., & Walsh, F. C. (2019). Electrodeposition of Ni[sbnd]P alloy coatings: A review. Surface and Coatings Technology, 369(March), 198–220. https://doi.org/10.1016/j.surfcoat.2019.03.055
- Patterson, A. L. (1939). The scherrer formula for X-ray particle size determination. Physical Review, 56(10), 978–982. https://doi.org/10.1103/PhysRev.56.978
- Promphet, N., Rattanawaleedirojn, P., & Rodthongkum, N. (2017). Electroless NiP-TiO2 sol-RGO: A smart coating for enhanced corrosion resistance and conductivity of steel. Surface and Coatings Technology, 325, 604–610. https://doi.org/10.1016/j.surfcoat.2017.07.018
- Sahoo, P., & Das, S. K. (2011). Tribology of electroless nickel coatings - A review. Materials and Design, 32(4), 1760–1775. https://doi.org/10.1016/j.matdes.2010.11.013
- SCHLESINGER, M. (2010). Modern electroplating.
- Touri, S., & Monirvaghefi, S. M. (2020). Fabrication and characterization of functionally graded Ni-P electroless coating with variable properties along the surface of the coating. Materials Today Communications, 24(April), 1–7. https://doi.org/10.1016/j.mtcomm.2020.101203
Comparison of Ni-P-CNF Coatings Produced by Electrodeposition and Electroless Methods in terms of Hardness and Corrosion
Yıl 2022,
, 127 - 131, 30.09.2022
Melisa Köse
,
Buse Yavuz
,
Zeynep Özcan
,
Dilara Uslu
,
Görkem Bulut
,
Sezer Tan
,
Hasan Algül
,
Mehmet Uysal
Öz
Ni-P and Ni-P-CNF (carbon nanofiber) coatings produced by electrodeposition and electroless methods were compared in terms of hardness and corrosion properties in this study. Electrolytic (with and without current) coatings, which have been very popular in recent years, have many advantages in themselves. Many researchers have benefited from these advantages and created a wealth of literature. Coating studies with CNF are limited. CNF reinforced to coatings provides an increase in corrosion resistance. In the study, this increase is shown by giving the corrosion rate values. The corrosion rate of the coatings obtained by adding CNF was found to be 5.34x10-3mpy in the Ni-P-CNF sample coated with the electroless method. In electrodeposition coating, this value increased slightly to 15.79x10-3. The corrosion resistance of the coatings produced by the electroless coating method is higher. In order to better explain the effect of CNF, the alloy Ni-P coatings are compared. The results revealed the positive effect of CNF. In the study, the hardness values were also compared by taking Vickers microhardness. CNF showed a negative effect in hardness studies. Hardness values were lower in the coatings with CNF added (521Hv in electroless – 572Hv in electrodeposition). The coatings were also supported by X-ray diffractometry (XRD), Scanning electron microscopy (SEM) and energy distribution spectrometry (EDS) analyzes.
Kaynakça
- Borkar, T., & Harimkar, S. P. (2011). Effect of electrodeposition conditions and reinforcement content on microstructure and tribological properties of nickel composite coatings. Surface and Coatings Technology, 205(17–18), 4124–4134. https://doi.org/10.1016/j.surfcoat.2011.02.057
- Dhiman, M. K., Kumar, M., Ram, M., & Sharma, S. (2018). Investigation of Hardness of Electroless Ni-P-CNF Composite Coatings. 6(2), 238–245.
- Fathy, M., Kashyout, A. E. H. B., Elyamny, S., Roston, G. D., & Bishara, A. A. (2014). Effect of CdCl2 concentration and heat treatment on electrodeposited nano-crystalline CdS thin films from non-aqueous solution. International Journal of Electrochemical Science, 9(11), 6155–6165.
- Gao, Z., Zhao, S., Wang, Y., Wang, X., & Wen, L. (2015). Corrosion behavior and wear resistance characteristics of electroless Ni-P-CNTs plating on carbon steel. International Journal of Electrochemical Science, 10(1), 637–648.
- Huang, H. C., Chung, S. T., Pan, S. J., Tsai, W. T., & Lin, C. S. (2010). Microstructure evolution and hardening mechanisms of Ni-P electrodeposits. Surface and Coatings Technology, 205(7), 2097–2103. https://doi.org/10.1016/j.surfcoat.2010.08.115
- Lelevic, A., & Walsh, F. C. (2019). Electrodeposition of Ni[sbnd]P alloy coatings: A review. Surface and Coatings Technology, 369(March), 198–220. https://doi.org/10.1016/j.surfcoat.2019.03.055
- Patterson, A. L. (1939). The scherrer formula for X-ray particle size determination. Physical Review, 56(10), 978–982. https://doi.org/10.1103/PhysRev.56.978
- Promphet, N., Rattanawaleedirojn, P., & Rodthongkum, N. (2017). Electroless NiP-TiO2 sol-RGO: A smart coating for enhanced corrosion resistance and conductivity of steel. Surface and Coatings Technology, 325, 604–610. https://doi.org/10.1016/j.surfcoat.2017.07.018
- Sahoo, P., & Das, S. K. (2011). Tribology of electroless nickel coatings - A review. Materials and Design, 32(4), 1760–1775. https://doi.org/10.1016/j.matdes.2010.11.013
- SCHLESINGER, M. (2010). Modern electroplating.
- Touri, S., & Monirvaghefi, S. M. (2020). Fabrication and characterization of functionally graded Ni-P electroless coating with variable properties along the surface of the coating. Materials Today Communications, 24(April), 1–7. https://doi.org/10.1016/j.mtcomm.2020.101203