Araştırma Makalesi
BibTex RIS Kaynak Göster

Condensation Zone Estimation and Determination and Comparison of Condensation by Numerical Analysis in Vehicle Lighting System

Yıl 2022, , 49 - 54, 30.09.2022
https://doi.org/10.31590/ejosat.1173732

Öz

The condensation problem in automobile lighting system risks driving and driver safety. Condensation is the main cause of problems such insufficient lighting. In our study, the problem of condensation in vehicle headlights is discussed. The region where condensation will occur was estimated from the results obtained from the temperature analysis. The amount of condensed mass was calculated by the calculation method. Calculations were confirmed by numerical analysis. In the analyzes made in ANSYS 2022 R2 software, the transmission effects (conjugate effects) in the headlight components were taken into account. Boussinesq approach was used for natural convection and Monte Carlo approach was used for considering radiation effects. Mesh independence was was studied. Thermal analyzes were made at ambient temperature T∞=5 °C and RH: 95% independent of time. As a result of the analysis, the indoor air temperature distribution, air flow profiles were examined and an estimate was made where the condensation would occur. Then, the thermal analysis results were read as the initial condition, and it was kept for 300 seconds. Water at 3 °C was sprayed onto the lens. Condensation formation analyzes were made in terms of time. After the formation of condensation, the power was turned on to the lighting elements and it was expected that the condensation would be removed within 1800 seconds as per the specification. The region where condensation is predicted and the region with condensation in the analyzes are compatible with the literature.

Destekleyen Kurum

Feka Otomotiv Mamulleri Sanayi ve Ticaret A.Ş, Rubida Mühendislik Enerji San. ve Tic. LTD.ŞTİ

Teşekkür

We would like to thank Feka Automotive Mamulleri Industry and Trade Company for allowing us to use the testing facilities in this publication, and Rubida Engineering Energy Company for allowing us to use the analysis facilities.

Kaynakça

  • Çengel Y., (2002), Heat Transfer, A Practical approach, Second Edition, McGraw-Hill, NewYork.
  • Dehbi. A. & Guentay. S. A., (1997), “Model for the Performance of a Vertical Tube Condenser in the Presence of Non-Condensable Gases”. Nuclear Engineering and Design, 177 (1-3), pp. 41-52.
  • Deponti. A, Damiani. F., Brugali L., Bucchieri L., Zattoni S., Alaimo., (2009), J.,“Modelling of condensate formation and disposal inside an automotive headlamp”. EnginSoft Newsletter, Year 6, no.2, Italy.
  • Erik. P., (2006), Automotive headlamp – analytical solution and measurements of condensation inside a headlamp, General Motors.
  • Fluent 12, Users Guide
  • Fluent 12, Theory Guide
  • Hassan. M.B., Petitjean C., Deffieux J.C., Gilotte P., (1999) “Windshield Defogging Simulation with Comparison to Test Data”. SAE paper 1999-01-120.
  • Herridge M., (2003), “Condensation simulations of automotive lighting assemblies”, SAE World Congress, Detroit.
  • Incropera/Dewitt/Bergman/Lavine, Fundamental of heat and mass transfer, sixth edition. Wiley.
  • Liu. J., Aizawa. Y., Yoshino. H., (2003), “Experımental And Cfd Studıes On Surface Condensatıon”. 8th International IBPSA Conference August 11-14, Eindhoven, Netherlands.
  • Nusselt. W., (1916) “Des Oberflachenkondensation des Wasserdampfes”. Z.Vereines Deutsch. Ing. 60, pp. 541-564, 569-575.
  • Okada Y., Nouzawa, T., Nakamura T., (2001), “CFD Analysis of the flow in an automotive headlamp” Mazda motor company, Hiroshima, Japan.
  • Oxyzoglou, I., Tejero, A., (2018) “Prediction of Condensation forming in Automotive Headlights using CFD” TOYOTA Motor Europe, Zaventem, Belgium .
  • Preihs E., (2006), “Analytic Solution and Measurements of Condensation inside a Headlamp”, Proc. Nordic COMSOL Conference, Copenhagen.
  • Shiozawa, T., Ohishi, M., Yoneyama, M., Sakakibara, K., Goto, S., Tsuda, N. ve Kobayashi, T. (2005). “Analysis of Moisture and Natural Convection Inside An Automotive Headlamp By Using CFD SAE World Congress and Exhibition, Detroit, MI, USA”. (Session: Automotive Lighting Technology (Part 3 of 4) Automotive Lighting Engineering Analysis I: Modeling SP-1932).
  • Touichirou. S., Ohishi. M., Yoneyama. M., Sakakibara. K., Tsuda. N., Kobayashi. T., (2005), “Analysis of moisture and natural convection inside an automotive headlamp by using CFD”, SAE world congress, Detroit, 2005-01-1449.

Araç Aydınlatma Sisteminde Yoğuşma Bölgesi Tahmini ve Yoğuşmanın Sayısal Analiz ile Belirlenmesi ve Karşılaştırılması

Yıl 2022, , 49 - 54, 30.09.2022
https://doi.org/10.31590/ejosat.1173732

Öz

Otomobil aydınlatma sistemindeki yoğuşma sorunu, sürüş ve sürücü güvenliğini riske atmaktadır. Yetersiz aydınlatma gibi sorunların ana nedenleri arasında yoğuşma önemli bir problemdir. Çalışmamızda araç farlarında yoğuşma sorunu ele alınmıştır. Sıcaklık analizinden elde edilen sonuçlardan yoğuşmanın meydana geleceği bölge tahmin edilmiştir. Yoğunlaşan kütle miktarı hesaplama yöntemi ile hesaplanmıştır. Hesaplamalar sayısal analizle doğrulanöıştır. ANSYS 2022 R2 yazılımında yapılan analizlerde far bileşenlerinde ısı iletim etkileri dikkate alınmıştır. Doğal taşınım için Boussinesq yaklaşımı, radyasyon etkilerini dikkate almak için Monte Carlo yaklaşımı kullanılmıştır. Eleman sayısından bağımsızlık çalışması yapılmıştır. Termal analizler, T∞=5 °C ortam sıcaklığında ve zamandan bağımsız olarak RH: %95 tanımlanarak yapılmıştır. Analiz sonucunda iç ortam hava sıcaklık dağılımı, hava akış profilleri incelenmiş ve yoğuşmanın nerede olacağı tahmini yapılmıştır. Daha sonra termal analiz sonuçları başlangıç koşulu olarak tanımlanmış ve 300 saniye lens üzerine 3 °C'de su püskürtülmüştür. Zamana bağşı yoğuşma oluşum analizleri yapılmıştır. Yoğuşma oluştuktan sonra aydınlatma elemanlarına güç tanımı yapılmıştır. Şartnameye göre 1800 saniye içinde yoğuşmanın giderilmesi beklenmiştir. Analizlerde yoğuşmanın tahmin edildiği bölgede oluştuğu, yoğuşmanın oluştuğu bölge literatür ile uyumlu çıkmıştır.

Kaynakça

  • Çengel Y., (2002), Heat Transfer, A Practical approach, Second Edition, McGraw-Hill, NewYork.
  • Dehbi. A. & Guentay. S. A., (1997), “Model for the Performance of a Vertical Tube Condenser in the Presence of Non-Condensable Gases”. Nuclear Engineering and Design, 177 (1-3), pp. 41-52.
  • Deponti. A, Damiani. F., Brugali L., Bucchieri L., Zattoni S., Alaimo., (2009), J.,“Modelling of condensate formation and disposal inside an automotive headlamp”. EnginSoft Newsletter, Year 6, no.2, Italy.
  • Erik. P., (2006), Automotive headlamp – analytical solution and measurements of condensation inside a headlamp, General Motors.
  • Fluent 12, Users Guide
  • Fluent 12, Theory Guide
  • Hassan. M.B., Petitjean C., Deffieux J.C., Gilotte P., (1999) “Windshield Defogging Simulation with Comparison to Test Data”. SAE paper 1999-01-120.
  • Herridge M., (2003), “Condensation simulations of automotive lighting assemblies”, SAE World Congress, Detroit.
  • Incropera/Dewitt/Bergman/Lavine, Fundamental of heat and mass transfer, sixth edition. Wiley.
  • Liu. J., Aizawa. Y., Yoshino. H., (2003), “Experımental And Cfd Studıes On Surface Condensatıon”. 8th International IBPSA Conference August 11-14, Eindhoven, Netherlands.
  • Nusselt. W., (1916) “Des Oberflachenkondensation des Wasserdampfes”. Z.Vereines Deutsch. Ing. 60, pp. 541-564, 569-575.
  • Okada Y., Nouzawa, T., Nakamura T., (2001), “CFD Analysis of the flow in an automotive headlamp” Mazda motor company, Hiroshima, Japan.
  • Oxyzoglou, I., Tejero, A., (2018) “Prediction of Condensation forming in Automotive Headlights using CFD” TOYOTA Motor Europe, Zaventem, Belgium .
  • Preihs E., (2006), “Analytic Solution and Measurements of Condensation inside a Headlamp”, Proc. Nordic COMSOL Conference, Copenhagen.
  • Shiozawa, T., Ohishi, M., Yoneyama, M., Sakakibara, K., Goto, S., Tsuda, N. ve Kobayashi, T. (2005). “Analysis of Moisture and Natural Convection Inside An Automotive Headlamp By Using CFD SAE World Congress and Exhibition, Detroit, MI, USA”. (Session: Automotive Lighting Technology (Part 3 of 4) Automotive Lighting Engineering Analysis I: Modeling SP-1932).
  • Touichirou. S., Ohishi. M., Yoneyama. M., Sakakibara. K., Tsuda. N., Kobayashi. T., (2005), “Analysis of moisture and natural convection inside an automotive headlamp by using CFD”, SAE world congress, Detroit, 2005-01-1449.
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Kemal Furkan Sökmen 0000-0001-8647-4861

Erol Kocabıyık 0000-0002-1573-0693

Yunus Meşeci 0000-0002-8480-1379

Onur Kadir Rençber 0000-0003-3254-5358

Yayımlanma Tarihi 30 Eylül 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Sökmen, K. F., Kocabıyık, E., Meşeci, Y., Rençber, O. K. (2022). Condensation Zone Estimation and Determination and Comparison of Condensation by Numerical Analysis in Vehicle Lighting System. Avrupa Bilim Ve Teknoloji Dergisi(40), 49-54. https://doi.org/10.31590/ejosat.1173732